
Reinforcement Learning Toolbox™
User's Guide

R2019b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Reinforcement Learning Toolbox™ User's Guide
© COPYRIGHT 2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History
March 2019 Online only New for Version 1.0 (Release 2019a)
September 2019 Online only Revised for Version 1.1 (Release 2019b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Getting Started
1

Reinforcement Learning Toolbox Product Description 1-2

What Is Reinforcement Learning? . 1-3
Reinforcement Learning Workflow . 1-4

Reinforcement Learning for Control Systems Applications . . . 1-7

Train Reinforcement Learning Agent in Basic Grid World . . 1-11

Train Reinforcement Learning Agent in MDP Environment . 1-19

Create Simulink Environment and Train Agent 1-25

Create Environments
2

Create MATLAB Environments for Reinforcement Learning
. 2-2

Action and Observation Signals . 2-3
Predefined MATLAB Environments . 2-3
Custom MATLAB Environments . 2-4

Create Simulink Environments for Reinforcement Learning
. 2-6

Action and Observation Signals . 2-7
Predefined Simulink Environments . 2-7
Custom Simulink Environments . 2-8
Water Tank Environment Model . 2-8

iii

Contents

Define Reward Signals . 2-13
Continuous Rewards . 2-13
Discrete Rewards . 2-14
Mixed Rewards . 2-14

Load Predefined Grid World Environments 2-16
Basic Grid World . 2-16
Deterministic Waterfall Grid Worlds 2-18
Stochastic Waterfall Grid Worlds . 2-21

Load Predefined Control System Environments 2-24
Cart-Pole Environments . 2-24
Double Integrator Environments . 2-27
Simple Pendulum Environments with Image Observation . . . 2-30

Load Predefined Simulink Environments 2-33
Simple Pendulum Simulink Model . 2-33
Cart-Pole Simscape Model . 2-36

Create Custom Grid World Environments 2-40
Grid World Model . 2-40
Grid World Environment . 2-46

Create MATLAB Environment using Custom Functions 2-47

Create Custom MATLAB Environment from Template 2-56
Create Template Class . 2-56
Environment Properties . 2-57
Required Functions . 2-58
Optional Functions . 2-61
Environment Visualization . 2-62
Create Custom Environment . 2-63

Define Policies and Value Functions
3

Create Policy and Value Function Representations 3-2
Function Approximation . 3-2
Table Representations . 3-3
Deep Neural Network Representations 3-4

iv Contents

Linear Basis Function Representations 3-9
Specify Agent Representations . 3-10

Import Policy and Value Function Representations 3-12
Import Actor and Critic for Image Observation Application . . 3-12

Create Agents
4

Reinforcement Learning Agents . 4-2
Built-In Agents . 4-4
Custom Agents . 4-4

Q-Learning Agents . 4-5
Critic Function . 4-5
Agent Creation . 4-5
Training Algorithm . 4-6

SARSA Agents . 4-8
Critic Function . 4-8
Agent Creation . 4-8
Training Algorithm . 4-9

Deep Q-Network Agents . 4-11
Critic Function . 4-11
Agent Creation . 4-12
Training Algorithm . 4-12

Deep Deterministic Policy Gradient Agents 4-15
Actor and Critic Function . 4-15
Agent Creation . 4-16
Training Algorithm . 4-16

Policy Gradient Agents . 4-19
Actor and Critic Functions . 4-19
Agent Creation . 4-19
Training Algorithm . 4-20

Actor-Critic Agents . 4-23
Actor and Critic Function . 4-23

v

Agent Creation . 4-24
Training Algorithm . 4-24

Proximal Policy Optimization Agents . 4-27
Actor and Critic Function . 4-27
Agent Creation . 4-28
Training Algorithm . 4-28

Custom Agents . 4-32
Create Template Class . 4-32
Agent Properties . 4-32
Constructor Function . 4-34
Actor and Critic Representations . 4-35
Required Functions . 4-35
Optional Functions . 4-38
Create Custom Agent . 4-39

Train and Validate Agents
5

Train Reinforcement Learning Agents . 5-2
Training Algorithm . 5-2
Episode Manager . 5-3
Save Candidate Agents . 5-4
Parallel Computing . 5-5
GPU Acceleration . 5-7
Validate Trained Policy . 5-7
Environment Visualization . 5-8

Train DQN Agent to Balance Cart-Pole System 5-10

Train PG Agent to Balance Cart-Pole System 5-18

Train AC Agent to Balance Cart-Pole System 5-24

Train PG Agent with Baseline to Control Double Integrator
System . 5-31

Train DDPG Agent to Control Double Integrator System 5-38

vi Contents

Train DQN Agent to Swing Up and Balance Pendulum 5-46

Train DDPG Agent to Swing Up and Balance Pendulum 5-55

Train DDPG Agent to Swing Up and Balance Cart-Pole System
. 5-64

Train DDPG Agent to Swing Up and Balance Pendulum with
Bus Signal . 5-73

Train DDPG Agent to Swing Up and Balance Pendulum with
Image Observation . 5-83

Create Agent Using Deep Network Designer and Train Using
Image Observations . 5-93

Train AC Agent to Balance Cart-pole System Using Parallel
Computing . 5-110

Train DDPG Agent to Control Flying Robot 5-116

Train DDPG Agent for Adaptive Cruise Control 5-124

Train DQN Agent for Lane Keeping Assist 5-134

Train DDPG Agent for Path Following Control 5-144

Train DQN Agent for Lane Keeping Assist Using Parallel
Computing . 5-155

Train Biped Robot to Walk Using DDPG Agent 5-165

Quadruped Robot Locomotion Using DDPG Agent 5-174

Train Custom LQR Agent . 5-185

Imitate MPC Controller for Lane Keep Assist 5-191

vii

Deploy Trained Policies
6

Deploy Trained Reinforcement Learning Policies 6-2
Create Policy Evaluation Function . 6-2
Generate Code Using GPU Coder . 6-2
Generate Code Using MATLAB Coder 6-4

viii Contents

Getting Started

• “Reinforcement Learning Toolbox Product Description” on page 1-2
• “What Is Reinforcement Learning?” on page 1-3
• “Reinforcement Learning for Control Systems Applications” on page 1-7
• “Train Reinforcement Learning Agent in Basic Grid World” on page 1-11
• “Train Reinforcement Learning Agent in MDP Environment” on page 1-19
• “Create Simulink Environment and Train Agent” on page 1-25

1

Reinforcement Learning Toolbox Product Description
Design and train policies using reinforcement learning

Reinforcement Learning Toolbox™ provides functions and blocks for training policies
using reinforcement learning algorithms including DQN, A2C, and DDPG. You can use
these policies to implement controllers and decision-making algorithms for complex
systems such as robots and autonomous systems. You can implement the policies using
deep neural networks, polynomials, or look-up tables.

The toolbox lets you train policies by enabling them to interact with environments
represented by MATLAB® or Simulink® models. You can evaluate algorithms, experiment
with hyperparameter settings, and monitor training progress. To improve training
performance, you can run simulations in parallel on the cloud, computer clusters, and
GPUs (with Parallel Computing Toolbox™ and MATLAB Parallel Server™).

Through the ONNX™ model format, existing policies can be imported from deep learning
frameworks such as TensorFlow™ Keras and PyTorch (with Deep Learning Toolbox™). You
can generate optimized C, C++, and CUDA code to deploy trained policies on
microcontrollers and GPUs.

The toolbox includes reference examples for using reinforcement learning to design
controllers for robotics and automated driving applications.

1 Getting Started

1-2

What Is Reinforcement Learning?
Reinforcement learning is a goal-directed computational approach where a computer
learns to perform a task by interacting with an unknown dynamic environment. This
learning approach enables a computer to make a series of decisions to maximize the
cumulative reward for the task without human intervention and without being explicitly
programmed to achieve the task. The following diagram shows a general representation
of a reinforcement learning scenario.

The goal of reinforcement learning is to train an agent to complete a task within an
unknown environment. The agent receives observations and a reward from the
environment and sends actions to the environment. The reward is a measure of how
successful an action is with respect to completing the task goal.

 What Is Reinforcement Learning?

1-3

The agent contains two components: a policy and a learning algorithm.

• The policy is a mapping that selects actions based on the observations from the
environment. Typically, the policy is a function approximator with tunable parameters,
such as a deep neural network.

• The learning algorithm continuously updates the policy parameters based on the
action, observations, and reward. The goal of the learning algorithm is to find an
optimal policy that maximizes the cumulative reward received during the task.

In other words, reinforcement learning refers to an agent learning the optimal behavior
through repeated trial-and-error interactions with the environment without human
involvement.

As an example, consider the task of parking a vehicle using an automated driving system.
The goal of this task is for the vehicle computer (agent) to park the vehicle in the correct
position and orientation. To do so, the controller uses readings from cameras,
accelerometers, gyroscopes, a GPS receiver, and lidar (observations) to generate
steering, braking, and acceleration commands (actions). The action commands are sent
to the actuators that control the vehicle. The resulting observations depend on the
actuators, sensors, vehicle dynamics, road surface, wind, and many other less-important
factors. All these factors, that is, everything that is not the agent, make up the
environment in reinforcement learning.

To learn how to generate the correct actions from the observations, the computer
repeatedly tries to park the vehicle using a trial-and-error process. To guide the learning
process, you provide a signal that is one when the car successfully reaches the desired
position and orientation and zero otherwise (reward). During each trial, the computer
selects actions using a mapping (policy) initialized with some default values. After each
trial, the computer updates the mapping to maximize the reward (learning algorithm).
This process continues until the computer learns an optimal mapping that successfully
parks the car.

Reinforcement Learning Workflow
The general workflow for training an agent using reinforcement learning includes the
following steps.

1 Getting Started

1-4

1 Formulate Problem — Define the task for the agent to learn, including how the
agent interacts with the environment and any primary and secondary goals the agent
must achieve.

2 Create Environment — Define the environment within which the agent operates,
including the interface between agent and environment and the environment
dynamic model. For more information, see “Create MATLAB Environments for
Reinforcement Learning” on page 2-2 and “Create Simulink Environments for
Reinforcement Learning” on page 2-6.

3 Define Reward — Specify the reward signal that the agent uses to measure its
performance against the task goals and how this signal is calculated from the
environment. For more information, see “Define Reward Signals” on page 2-13.

4 Create Agent — Create the agent, which includes defining a policy representation
and configuring the agent learning algorithm. For more information, see “Create
Policy and Value Function Representations” on page 3-2 and “Reinforcement
Learning Agents” on page 4-2.

5 Train Agent — Train the agent policy representation using the defined environment,
reward, and agent learning algorithm. For more information, see “Train
Reinforcement Learning Agents” on page 5-2.

6 Validate Agent — Evaluate the performance of the trained agent by simulating the
agent and environment together. For more information, see “Train Reinforcement
Learning Agents” on page 5-2.

7 Deploy Policy — Deploy the trained policy representation using, for example,
generated GPU code. For more information, see “Deploy Trained Reinforcement
Learning Policies” on page 6-2.

Training an agent using reinforcement learning is an iterative process. Decisions and
results in later stages can require you to return to an earlier stage in the learning
workflow. For example, if the training process does not converge to an optimal policy

 What Is Reinforcement Learning?

1-5

within a reasonable amount of time, you may have to update any of the following before
retraining the agent:

• Training settings
• Learning algorithm configuration
• Policy representation
• Reward signal definition
• Action and observation signals
• Environment dynamics

See Also

More About
• “Reinforcement Learning for Control Systems Applications” on page 1-7
• “Create Simulink Environment and Train Agent” on page 1-25

1 Getting Started

1-6

Reinforcement Learning for Control Systems
Applications

The behavior of a reinforcement learning policy (observing the environment and
generating actions to complete a task in an optimal manner) is similar to the operation of
a controller in a control system. Reinforcement learning can be translated to a control
system representation using the following mapping.

 Reinforcement Learning for Control Systems Applications

1-7

1 Getting Started

1-8

Reinforcement
Learning

Control Systems

Policy Controller
Environment Everything that is not the controller — In the preceding

diagram, the environment includes the plant, the reference
signal, and the calculation of the error. In general, the
environment can also include additional elements, such as:

• Measurement noise
• Disturbance signals
• Filters
• Analog-to-digital and digital-to-analog converters

Observation Any measurable value from the environment that is visible to
the agent — In the preceding diagram, the controller can see
the error signal from the environment. You can also create
agents that observe, for example, the reference signal,
measurement signal, and measurement signal rate of change.

Action Manipulated variables or control actions
Reward Function of the measurement, error signal, or some other

performance metric — For example, you can implement
reward functions that minimize the steady-state error while
minimizing control effort.

Learning Algorithm Adaptation mechanism of an adaptive controller

Many control problems encountered in areas such as robotics and automated driving
require complex, nonlinear control architectures. Techniques such as gain-scheduling,
robust control, and nonlinear model predictive control (MPC) can be used for these
problems, but often require significant domain expertise from the control engineer. For
example, gains and parameters are difficult to tune. The resulting controllers can pose
implementation challenges, such as the computational intensity of nonlinear MPC.

You can use deep neural networks, trained using reinforcement learning, to implement
such complex controllers. These systems can be self-taught without intervention from an
expert control engineer. Also, once trained, you can deploy the reinforcement learning
policy in a computationally efficient way.

 Reinforcement Learning for Control Systems Applications

1-9

You can also use reinforcement learning to create an end-to-end controller that generates
actions directly from raw data, such as images. This approach is attractive for video-
intensive applications, such as automated driving, since you do not have to manually
define and select image features.

See Also

More About
• “What Is Reinforcement Learning?” on page 1-3
• “Create MATLAB Environments for Reinforcement Learning” on page 2-2
• “Create Simulink Environments for Reinforcement Learning” on page 2-6
• “Define Reward Signals” on page 2-13

1 Getting Started

1-10

Train Reinforcement Learning Agent in Basic Grid World
This example shows how to solve a grid world environment using reinforcement learning
by training Q-learning and SARSA agents. For more information on these agents, see “Q-
Learning Agents” on page 4-5 and “SARSA Agents” on page 4-8, respectively.

This grid world environment has the following configuration and rules:

1 A 5-by-5 grid world bounded by borders, with 4 possible actions (North=1, South=2,
East=3, West=4).

2 The agent begins from cell [2,1] (second row, first column).
3 The agent receives reward +10 if it reaches the terminal state at cell [5,5] (blue).
4 The environment contains a special jump from cell [2,4] to cell [4,4] with +5 reward.
5 The agent is blocked by obstacles (black cells).
6 All other actions result in -1 reward.

 Train Reinforcement Learning Agent in Basic Grid World

1-11

Create Grid World Environment

Create the basic grid world environment.

env = rlPredefinedEnv("BasicGridWorld");

To specify the initial state of the agent is always [2,1], specify a reset function that
returns the initial agent state. This function is called at the start of each training episode
and simulation. The states are numbered starting at position [1,1] and counting down the
column. Therefore, create an anonymous function handle that sets the initial state to 2.

env.ResetFcn = @() 2;

Fix the random generator seed for reproducibility.

1 Getting Started

1-12

rng(0)

Create Q-Learning Agent

To create a Q-learning agent, first create a Q table using the observation and action
specifications from the grid world environment. Set the learn rate of the representation to
1.

qTable = rlTable(getObservationInfo(env),getActionInfo(env));
tableRep = rlRepresentation(qTable);
tableRep.Options.LearnRate = 1;

Next, create a Q-learning agent using this table representation, configuring the epsilon-
greedy exploration. For more information on creating Q-learning agents, see rlQAgent
and rlQAgentOptions.

agentOpts = rlQAgentOptions;
agentOpts.EpsilonGreedyExploration.Epsilon = .04;
qAgent = rlQAgent(tableRep,agentOpts);

Train Q-Learning Agent

To train the agent, first specify the training options. For this example, use the following
options:

• Train for at most 200 episodes, with each episode lasting at most 50 time steps.
• Stop training when the agent receives an average cumulative reward greater than 10

over 30 consecutive episodes.

For more information, see rlTrainingOptions.

trainOpts = rlTrainingOptions;
trainOpts.MaxStepsPerEpisode = 50;
trainOpts.MaxEpisodes= 200;
trainOpts.StopTrainingCriteria = "AverageReward";
trainOpts.StopTrainingValue = 11;
trainOpts.ScoreAveragingWindowLength = 30;

Train the Q-Learning agent using the train function. This may take several minutes to
complete. To save time while running this example, load a pretrained agent by setting
doTraining to false. To train the agent yourself, set doTraining to true.

doTraining = false;

 Train Reinforcement Learning Agent in Basic Grid World

1-13

if doTraining
 % Train the agent.
 trainingStats = train(qAgent,env,trainOpts);
else
 % Load pretrained agent for the example.
 load('basicGWQAgent.mat','qAgent')
end

The Episode Manager window opens and displays the training progress.

Validate Q-Learning Results

To validate the training results, simulate the agent in the training environment.

Before running the simulation, visualize the environment and configure the visualization
to maintain a trace of the agent states.

1 Getting Started

1-14

plot(env)
env.Model.Viewer.ShowTrace = true;
env.Model.Viewer.clearTrace;

Simulate the agent in the environment using the sim function.

sim(qAgent,env)

The agent trace shows that the agent successfully found the jump from state [2,4] to cell
[4,4].

 Train Reinforcement Learning Agent in Basic Grid World

1-15

Create and Train SARSA Agent

To create the SARSA agent using the same Q table representation and epsilon-greedy
configuration as the Q-learning agent. For more information on creating SARSA agents,
see rlSARSAAgent and rlSARSAAgentOptions.

agentOpts = rlSARSAAgentOptions;
agentOpts.EpsilonGreedyExploration.Epsilon = 0.04;
sarsaAgent = rlSARSAAgent(tableRep,agentOpts);

Train the SARSA agent using the train function. This may take several minutes to
complete. To save time while running this example, load a pretrained agent by setting
doTraining to false. To train the agent yourself, set doTraining to true.

doTraining = false;

if doTraining
 % Train the agent.
 trainingStats = train(sarsaAgent,env,trainOpts);
else
 % Load pretrained agent for the example.
 load('basicGWSarsaAgent.mat','sarsaAgent')
end

1 Getting Started

1-16

Validate SARSA Training

To validate the training results, simulate the agent in the training environment.

plot(env)
env.Model.Viewer.ShowTrace = true;
env.Model.Viewer.clearTrace;

Simulate the agent in the environment.

sim(sarsaAgent,env)

 Train Reinforcement Learning Agent in Basic Grid World

1-17

The SARSA agent finds the same grid world solution as the Q-learning agent.

See Also
createGridWorld | rlMDPEnv

More About
• “Reinforcement Learning Agents” on page 4-2
• “Train Reinforcement Learning Agents” on page 5-2

1 Getting Started

1-18

Train Reinforcement Learning Agent in MDP
Environment

This example shows how to train a Q-learning agent to solve a generic Markov decision
process (MDP) environment. For more information on these agents, see “Q-Learning
Agents” on page 4-5.

The MDP environment has the following graph.

Here:

1 Each circle represents a state.
2 At each state there is a decision to go up or down.
3 The agent begins from state 1.
4 The agent receives a reward equal to the value on each transition in the graph.
5 The training goal is to collect the maximum cumulative reward.

Create MDP Environment

Create an MDP model with eight states and two actions ("up" and "down").

 Train Reinforcement Learning Agent in MDP Environment

1-19

MDP = createMDP(8,["up";"down"]);

To model the transitions from the above graph, modify the state transition matrix and
reward matrix of the MDP. By default, these matrices contain zeros. For more information
on creating an MDP model and the properties of an MDP object, see createMDP.

Specify the state transition and reward matrices for the MDP. For example, in the
following commands:

• The first two lines specify the transition from state 1 to state 2 by taking action 1
("up") and a reward of +3 for this transition.

• The next two lines specify the transition from state 1 to state 3 by taking action 2
("down") and a reward of +1 for this transition.

MDP.T(1,2,1) = 1;
MDP.R(1,2,1) = 3;
MDP.T(1,3,2) = 1;
MDP.R(1,3,2) = 1;

Similarly, specify the state transitions and rewards for the remaining rules in the graph.

% State 2 transition and reward
MDP.T(2,4,1) = 1;
MDP.R(2,4,1) = 2;
MDP.T(2,5,2) = 1;
MDP.R(2,5,2) = 1;
% State 3 transition and reward
MDP.T(3,5,1) = 1;
MDP.R(3,5,1) = 2;
MDP.T(3,6,2) = 1;
MDP.R(3,6,2) = 4;
% State 4 transition and reward
MDP.T(4,7,1) = 1;
MDP.R(4,7,1) = 3;
MDP.T(4,8,2) = 1;
MDP.R(4,8,2) = 2;
% State 5 transition and reward
MDP.T(5,7,1) = 1;
MDP.R(5,7,1) = 1;
MDP.T(5,8,2) = 1;
MDP.R(5,8,2) = 9;
% State 6 transition and reward
MDP.T(6,7,1) = 1;
MDP.R(6,7,1) = 5;

1 Getting Started

1-20

MDP.T(6,8,2) = 1;
MDP.R(6,8,2) = 1;
% State 7 transition and reward
MDP.T(7,7,1) = 1;
MDP.R(7,7,1) = 0;
MDP.T(7,7,2) = 1;
MDP.R(7,7,2) = 0;
% State 8 transition and reward
MDP.T(8,8,1) = 1;
MDP.R(8,8,1) = 0;
MDP.T(8,8,2) = 1;
MDP.R(8,8,2) = 0;

Specify states "s7" and "s8" as terminal states of the MDP.

MDP.TerminalStates = ["s7";"s8"];

Create the reinforcement learning MDP environment for this process model.

env = rlMDPEnv(MDP);

To specify that the initial state of the agent is always state 1, specify a reset function that
returns the initial agent state. This function is called at the start of each training episode
and simulation. Create an anonymous function handle that sets the initial state to 1.

env.ResetFcn = @() 1;

Fix the random generator seed for reproducibility.

rng(0)

Create Q-Learning Agent

To create a Q-learning agent, first create a Q table using the observation and action
specifications from the MDP environment. Set the learning rate of the representation to
1.

qTable = rlTable(getObservationInfo(env), getActionInfo(env));
tableRep = rlRepresentation(qTable);
tableRep.Options.LearnRate = 1;

Next, create a Q-learning agent using this table representation, configuring the epsilon-
greedy exploration. For more information on creating Q-learning agents, see rlQAgent
and rlQAgentOptions.

 Train Reinforcement Learning Agent in MDP Environment

1-21

agentOpts = rlQAgentOptions;
agentOpts.DiscountFactor = 1;
agentOpts.EpsilonGreedyExploration.Epsilon = 0.9;
agentOpts.EpsilonGreedyExploration.EpsilonDecay = 0.01;
qAgent = rlQAgent(tableRep,agentOpts);

Train Q-Learning Agent

To train the agent, first specify the training options. For this example, use the following
options:

• Train for at most 200 episodes, with each episode lasting at most 50 time steps.
• Stop training when the agent receives an average cumulative reward greater than 10

over 30 consecutive episodes.

For more information, see rlTrainingOptions.

trainOpts = rlTrainingOptions;
trainOpts.MaxStepsPerEpisode = 50;
trainOpts.MaxEpisodes = 200;
trainOpts.StopTrainingCriteria = "AverageReward";
trainOpts.StopTrainingValue = 13;
trainOpts.ScoreAveragingWindowLength = 30;

Train the agent using the train function. This may take several minutes to complete. To
save time while running this example, load a pretrained agent by setting doTraining to
false. To train the agent yourself, set doTraining to true.

doTraining = false;

if doTraining
 % Train the agent.
 trainingStats = train(qAgent,env,trainOpts);
else
 % Load pretrained agent for the example.
 load('genericMDPQAgent.mat','qAgent');
end

1 Getting Started

1-22

Validate Q-Learning Results

To validate the training results, simulate the agent in the training environment using the
sim function. The agent successfully finds the optimal path which results in cumulative
reward of 13.

Data = sim(qAgent,env);
cumulativeReward = sum(Data.Reward)

cumulativeReward = 13

Since the discount factor is set to 1, the values in the Q table of the trained agent match
the undiscounted returns of the environment.

QTable = getLearnableParameterValues(getCritic(qAgent))

 Train Reinforcement Learning Agent in MDP Environment

1-23

QTable = 1x1 cell array
 {8x2 double}

TrueTableValues = [13,12;5,10;11,9;3,2;1,9;5,1;0,0;0,0]

TrueTableValues = 8×2

 13 12
 5 10
 11 9
 3 2
 1 9
 5 1
 0 0
 0 0

See Also
createMDP | rlMDPEnv

More About
• “Reinforcement Learning Agents” on page 4-2
• “Train Reinforcement Learning Agents” on page 5-2

1 Getting Started

1-24

Create Simulink Environment and Train Agent
This example shows how to convert the PI controller in watertank.slx to a
reinforcement learning deep deterministic policy gradient (DDPG) agent. For an example
that trains a DDPG agent in MATLAB®, see “Train DDPG Agent to Control Double
Integrator System” on page 5-38.

Water Tank Model

The original model for this example is the water tank model. The goal is to control the
level of the water in the tank. For more information about the water tank model, see
“watertank Simulink Model” (Simulink Control Design).

Modify the original model, making the following changes:

1 Delete the PID Controller.
2 Insert the RL Agent block.
3 Connect the observation vector ∫e dt e h T where h is the height of the tank,

e = r − h, and r is the reference height.
4 Set up the reward reward = 10 e < 0 . 1 − 1 e ≥ 0 . 1 − 100 h ≤ 0 h ≥ 20 .
5 Set up terminate signal if h ≤ 0 h ≥ 20.

The resulting model is rlwatertank.slx. For more information on this model and the
changes, see “Create Simulink Environments for Reinforcement Learning” on page 2-6.

open_system('rlwatertank')

 Create Simulink Environment and Train Agent

1-25

Create Environment Interface

Creating an environment model includes defining the following:

• Action and observation signals that the agent uses to interact with the environment.
For more information see rlNumericSpec and rlFiniteSetSpec.

• Reward signal that the agent uses to measure its success. For more information, see
“Define Reward Signals” on page 2-13.

Define the observation and action data specifications, obsInfo and actInfo,
respectively.

obsInfo = rlNumericSpec([3 1],...
 'LowerLimit',[-inf -inf 0]',...
 'UpperLimit',[inf inf inf]');
obsInfo.Name = 'observations';
obsInfo.Description = 'integrated error, error, and measured height';
numObservations = obsInfo.Dimension(1);

actInfo = rlNumericSpec([1 1]);
actInfo.Name = 'flow';
numActions = actInfo.Dimension(1);

1 Getting Started

1-26

Build the environment interface object.

env = rlSimulinkEnv('rlwatertank','rlwatertank/RL Agent',...
 obsInfo,actInfo);

Set a custom reset function that randomizes the reference values for the model.

env.ResetFcn = @(in)localResetFcn(in);

Specify the simulation time Tf and the agent sample time Ts in seconds

Ts = 1.0;
Tf = 200;

Fix the random generator seed for reproducibility.

rng(0)

Create DDPG agent

A DDPG agent approximates the long-term reward given observations and actions using a
critic value function representation. To create the critic, first create a deep neural
network with two inputs, the observation and action, and one output. For more
information on creating a deep neural network value function representation, see “Create
Policy and Value Function Representations” on page 3-2.

statePath = [
 imageInputLayer([numObservations 1 1],'Normalization','none','Name','State')
 fullyConnectedLayer(50,'Name','CriticStateFC1')
 reluLayer('Name','CriticRelu1')
 fullyConnectedLayer(25,'Name','CriticStateFC2')];
actionPath = [
 imageInputLayer([numActions 1 1],'Normalization','none','Name','Action')
 fullyConnectedLayer(25,'Name','CriticActionFC1')];
commonPath = [
 additionLayer(2,'Name','add')
 reluLayer('Name','CriticCommonRelu')
 fullyConnectedLayer(1,'Name','CriticOutput')];

criticNetwork = layerGraph();
criticNetwork = addLayers(criticNetwork,statePath);
criticNetwork = addLayers(criticNetwork,actionPath);
criticNetwork = addLayers(criticNetwork,commonPath);
criticNetwork = connectLayers(criticNetwork,'CriticStateFC2','add/in1');
criticNetwork = connectLayers(criticNetwork,'CriticActionFC1','add/in2');

 Create Simulink Environment and Train Agent

1-27

View the critic network configuration.

figure
plot(criticNetwork)

Specify options for the critic representation using rlRepresentationOptions.

criticOpts = rlRepresentationOptions('LearnRate',1e-03,'GradientThreshold',1);

Create the critic representation using the specified deep neural network and options. You
must also specify the action and observation specifications for the critic, which you obtain
from the environment interface. For more information, see rlRepresentation.

critic = rlRepresentation(criticNetwork,obsInfo,actInfo,'Observation',{'State'},'Action',{'Action'},criticOpts);

1 Getting Started

1-28

A DDPG agent decides which action to take given observations using an actor
representation. To create the actor, first create a deep neural network with one input, the
observation, and one output, the action.

Construct the actor in a similar manner as the critic.

actorNetwork = [
 imageInputLayer([numObservations 1 1],'Normalization','none','Name','State')
 fullyConnectedLayer(3, 'Name','actorFC')
 tanhLayer('Name','actorTanh')
 fullyConnectedLayer(numActions,'Name','Action')
];

actorOptions = rlRepresentationOptions('LearnRate',1e-04,'GradientThreshold',1);

actor = rlRepresentation(actorNetwork,obsInfo,actInfo,'Observation',{'State'},'Action',{'Action'},actorOptions);

To create the DDPG agent, first specify the DDPG agent options using
rlDDPGAgentOptions.

agentOpts = rlDDPGAgentOptions(...
 'SampleTime',Ts,...
 'TargetSmoothFactor',1e-3,...
 'DiscountFactor',1.0, ...
 'MiniBatchSize',64, ...
 'ExperienceBufferLength',1e6);
agentOpts.NoiseOptions.Variance = 0.3;
agentOpts.NoiseOptions.VarianceDecayRate = 1e-5;

Then, create the DDPG agent using the specified actor representation, critic
representation, and agent options. For more information, see rlDDPGAgent.

agent = rlDDPGAgent(actor,critic,agentOpts);

Train Agent

To train the agent, first specify the training options. For this example, use the following
options:

• Run each training for at most 5000 episodes, with each episode lasting at most 200
time steps.

• Display the training progress in the Episode Manager dialog box (set the Plots
option) and disable the command line display (set the Verbose option).

 Create Simulink Environment and Train Agent

1-29

• Stop training when the agent receives an average cumulative reward greater than 800
over twenty consecutive episodes. At this point, the agent can controls the level of
water in a tank.

For more information, see rlTrainingOptions.

maxepisodes = 5000;
maxsteps = ceil(Tf/Ts);
trainOpts = rlTrainingOptions(...
 'MaxEpisodes',maxepisodes, ...
 'MaxStepsPerEpisode',maxsteps, ...
 'ScoreAveragingWindowLength',20, ...
 'Verbose',false, ...
 'Plots','training-progress',...
 'StopTrainingCriteria','AverageReward',...
 'StopTrainingValue',800);

Train the agent using the train function. Training is a computationally intensive process
that takes several minutes to complete. To save time while running this example, load a
pretrained agent by setting doTraining to false. To train the agent yourself, set
doTraining to true.

doTraining = false;

if doTraining
 % Train the agent.
 trainingStats = train(agent,env,trainOpts);
else
 % Load pretrained agent for the example.
 load('WaterTankDDPG.mat','agent')
end

1 Getting Started

1-30

Validate Trained Agent

Validate the learned agent against the model by simulation.

simOpts = rlSimulationOptions('MaxSteps',maxsteps,'StopOnError','on');
experiences = sim(env,agent,simOpts);

 Create Simulink Environment and Train Agent

1-31

1 Getting Started

1-32

Local Function

function in = localResetFcn(in)

% randomize reference signal
blk = sprintf('rlwatertank/Desired \nWater Level');
h = 3*randn + 10;
while h <= 0 || h >= 20
 h = 3*randn + 10;
end
in = setBlockParameter(in,blk,'Value',num2str(h));

% randomize initial height
h = 3*randn + 10;
while h <= 0 || h >= 20
 h = 3*randn + 10;
end
blk = 'rlwatertank/Water-Tank System/H';
in = setBlockParameter(in,blk,'InitialCondition',num2str(h));

end

See Also
train

More About
• “Train Reinforcement Learning Agents” on page 5-2
• “Create Simulink Environments for Reinforcement Learning” on page 2-6

 See Also

1-33

Create Environments

• “Create MATLAB Environments for Reinforcement Learning” on page 2-2
• “Create Simulink Environments for Reinforcement Learning” on page 2-6
• “Define Reward Signals” on page 2-13
• “Load Predefined Grid World Environments” on page 2-16
• “Load Predefined Control System Environments” on page 2-24
• “Load Predefined Simulink Environments” on page 2-33
• “Create Custom Grid World Environments” on page 2-40
• “Create MATLAB Environment using Custom Functions” on page 2-47
• “Create Custom MATLAB Environment from Template” on page 2-56

2

Create MATLAB Environments for Reinforcement
Learning

In a reinforcement learning scenario, where you are training an agent to complete task,
the environment models the dynamics with which the agent interacts. As shown in the
following figure, the environment:

1 Receives actions from the agent
2 Outputs observations in response to the actions
3 Generates a reward measuring how well the action contributes to achieving the task

Creating an environment model includes defining the following:

2 Create Environments

2-2

• Action and observation signals that the agent uses to interact with the environment.
• Reward signal that the agent uses to measure its success. For more information, see
“Define Reward Signals” on page 2-13.

• Environment dynamic behavior.

Action and Observation Signals
When you create an environment object, you must specify the action and observation
signals that the agent uses to interact with the environment. You can create both discrete
and continuous action spaces. For more information, see rlNumericSpec and
rlFiniteSetSpec, respectively.

What signals you select as actions and observations depends on your application. For
example, for control system applications, the integrals (and sometimes derivatives) of
error signals are often useful observations. Also, for reference-tracking applications,
having a time-varying reference signal as an observation is helpful.

When you define your observation signals, ensure that all the system states are
observable through the observations. For example, an image observation of a swinging
pendulum has position information but does not have enough information to determine
the pendulum velocity. In this case, you can specify the pendulum velocity as a separate
observation.

Predefined MATLAB Environments
Reinforcement Learning Toolbox software provides predefined MATLAB environments for
which the actions, observations, rewards, and dynamics are already defined. You can use
these environments to:

• Learn reinforcement learning concepts
• Gain familiarity with Reinforcement Learning Toolbox software features
• Test your own reinforcement learning agents

For more information, see “Load Predefined Grid World Environments” on page 2-16 and
“Load Predefined Control System Environments” on page 2-24.

 Create MATLAB Environments for Reinforcement Learning

2-3

Custom MATLAB Environments
You can create the following types of custom MATLAB environments for your own
applications:

• Grid worlds with specified size, rewards, and obstacles
• Environments with dynamics specified using custom functions
• Environment specified by creating and modifying a template environment object

Once you create a custom environment object, you can train an agent in the same manner
as in a predefined environment. For more information on training agents, see “Train
Reinforcement Learning Agents” on page 5-2.

Custom Grid Worlds

You can create custom grid worlds of any size with your own custom reward, state
transition, and obstacle configurations. To create a custom grid world environment:

1 Create a grid world model using the createGridWorld function. For example,
create a grid world with ten rows and nine columns.

gw = createGridWorld(10,9);
2 Configure the grid world by modifying the properties of the model. For example,

specify the terminal state as location [7,9].

gw.TerminalStates = "[7,9]";
3 Create an MDP environment for this grid world, which the agent uses to interact with

the grid world model.

env = rlMDPEnv(gw);

Specify Custom Functions

For simple environments, you can define a custom environment object by creating an
rlFunctionEnv object, specifying your own custom reset and step functions.

• At the beginning of each training episode, the agent prepares the environment for
training by setting the initial conditions using the reset function. For example, you can
specify known initial state values or place the environment into a random initial state.

• The step function defines the dynamics of the environment; that is, how the state
changes in response to agent actions. At each training time step, the state of the
model is updated using the step function.

2 Create Environments

2-4

For more information, see “Create MATLAB Environment using Custom Functions” on
page 2-47.

Create and Modify Template Environment

For more complex environments, you can define a custom environment by creating and
modifying a template environment. To create a custom environment:

1 Create an environment template class using the rlCreateEnvTemplate function.
2 Modify the template environment, specifying environment properties, required

environment functions, and optional environment functions.
3 Validate your custom environment using validateEnvironment.

For more information, see “Create Custom MATLAB Environment from Template” on page
2-56.

See Also
rlCreateEnvTemplate | rlFunctionEnv | rlPredefinedEnv

More About
• “What Is Reinforcement Learning?” on page 1-3
• “Create Simulink Environments for Reinforcement Learning” on page 2-6

 See Also

2-5

Create Simulink Environments for Reinforcement
Learning

In a reinforcement learning scenario, where you are training an agent to complete task,
the environment models the dynamics with which the agent interacts. As shown in the
following figure, the environment:

1 Receives actions from the agent
2 Outputs observations in response to the actions
3 Generates a reward measuring how well the action contributes to achieving the task

Creating an environment model includes defining the following:

2 Create Environments

2-6

• Action and observation signals that the agent uses to interact with the environment.
• Reward signal that the agent uses to measure its success. For more information, see
“Define Reward Signals” on page 2-13.

• Environment dynamic behavior.

Action and Observation Signals
When you create an environment object, you must specify the action and observation
signals that the agent uses to interact with the environment. You can create both discrete
and continuous action spaces. For more information, see rlNumericSpec and
rlFiniteSetSpec, respectively.

What signals you select as actions and observations depends on your application. For
example, for control system applications, the integrals (and sometimes derivatives) of
error signals are often useful observations. Also, for reference-tracking applications,
having a time-varying reference signal as an observation is helpful.

When you define your observation signals, ensure that all the system states are
observable through the observations. For example, an image observation of a swinging
pendulum has position information but does not have enough information to determine
the pendulum velocity. In this case, you can specify the pendulum velocity as a separate
observation.

Predefined Simulink Environments
Reinforcement Learning Toolbox software provides predefined Simulink environments for
which the actions, observations, rewards, and dynamics are already defined. You can use
these environments to:

• Learn reinforcement learning concepts
• Gain familiarity with Reinforcement Learning Toolbox software features
• Test your own reinforcement learning agents

For more information, see “Load Predefined Simulink Environments” on page 2-33.

 Create Simulink Environments for Reinforcement Learning

2-7

Custom Simulink Environments
To specify your own custom reinforcement learning environment, create a Simulink model
with an RL Agent block. In this model, connect the action, observation, and reward
signals to the RL Agent block.

For the action and observation signals, you must create specification objects using
rlNumericSpec for continuous signals and rlFiniteSetSpec for discrete signals. For
bus signals, create specifications using bus2RLSpec.

For the reward signal, construct a scalar signal in the model, and connect this signal to
the RL Agent block. For more information, see “Define Reward Signals” on page 2-13.

After configuring the Simulink model, create an environment object for the model using
the rlSimulinkEnv function.

If you have a reference model with an appropriate action input port, observation output
port, and scalar reward output port, you can automatically create a Simulink model that
includes this reference model and an RL Agent block. For more information, see
createIntegratedEnv. This function returns the environment object, action
specifications, and observation specifications for the model.

Your environment can include third-party functionality. For more information, see
“Integrate with Existing Simulation or Environment” (Simulink)

Water Tank Environment Model
This example creates a water tank reinforcement learning Simulink® environment that
contains an RL Agent block in the place of a controller for the water level in a tank. To
simulate this environment, you must create an agent and specify that agent in the RL
Agent block. For an example that trains an agent using this environment, see “Create
Simulink Environment and Train Agent” on page 1-25.

mdl = 'rlwatertank';
open_system(mdl)

2 Create Environments

2-8

The RL Agent block is connected to the following signals:

• Scalar action output signal
• Vector of observation input signals
• Scalar reward input signal
• Logical input signal for stopping the simulation

Actions and Observations

A reinforcement learning environment receives action signals from the agent and
generates observation signals in response to these actions. To create and train an agent,
you must create action and observation specification objects.

The action signal for this environment is the flow rate control signal that is sent to the
plant. To create a specification object for this continuous action signal, use the
rlNumericSpec function.

actionInfo = rlNumericSpec([1 1]);
actionInfo.Name = 'flow';

 Create Simulink Environments for Reinforcement Learning

2-9

If the action signal takes one of a discrete set of possible values, create the specification
using the rlFiniteSetSpec function.

For this environment, there are three observation signals sent to the agent, specified as a
vector signal. The observation vector is ∫e dt e h T , where:

• h is the height of the water in the tank
• e = r − h, where r is the reference value for the water height

Compute the observation signals in the generate observations subsystem.

open_system([mdl '/generate observations'])

Create a three-element vector of observation specifications. Specify a lower bound of 0
for the water height, leaving the other observation signals unbounded.

observationInfo = rlNumericSpec([3 1],...
 'LowerLimit',[-inf -inf 0]',...
 'UpperLimit',[inf inf inf]');
observationInfo.Name = 'observations';
observationInfo.Description = 'integrated error, error, and measured height';

If the actions or observations are represented by bus signals, create specifications using
the bus2RLSpec function.

Reward Signal

Construct a scalar reward signal. For this example, specify the following reward.

reward = 10 e < 0 . 1 − 1 e ≥ 0 . 1 − 100 h ≤ 0 h ≥ 20

The reward is positive when the error is below 0.1 and negative otherwise. Also, there is
a large reward penalty when the water height is outside 0 to 20 range.

2 Create Environments

2-10

Construct this reward in the calculate reward subsystem.

open_system([mdl '/calculate reward'])

Stop Signal

To terminate training episodes and simulations, specify a logical signal to the isdone
input port of the block. For this example, terminate the episode if h ≤ 0 or h ≥ 20.

Compute this signal in the stop simulation subsystem.

open_system([mdl '/stop simulation'])

Create Environment Object

Create an environment object for the Simulink model.

env = rlSimulinkEnv(mdl,[mdl '/RL Agent'],observationInfo,actionInfo);

 Create Simulink Environments for Reinforcement Learning

2-11

Reset Function

You can also create a custom reset function that randomizes parameters, variables, or
states of the model. In this example, the reset function randomizes the reference signal
and the initial water height and sets the corresponding block parameters.

env.ResetFcn = @(in)localResetFcn(in);

Local Function

function in = localResetFcn(in)

% randomize reference signal
blk = sprintf('rlwatertank/Desired \nWater Level');
h = 3*randn + 10;
while h <= 0 || h >= 20
 h = 3*randn + 10;
end
in = setBlockParameter(in,blk,'Value',num2str(h));

% randomize initial height
h = 3*randn + 10;
while h <= 0 || h >= 20
 h = 3*randn + 10;
end
blk = 'rlwatertank/Water-Tank System/H';
in = setBlockParameter(in,blk,'InitialCondition',num2str(h));

end

See Also
createIntegratedEnv | rlPredefinedEnv | rlSimulinkEnv

More About
• “What Is Reinforcement Learning?” on page 1-3
• “Create MATLAB Environments for Reinforcement Learning” on page 2-2

2 Create Environments

2-12

Define Reward Signals
To guide the learning process, reinforcement learning uses a scalar reward signal
generated from the environment. This signal measures the performance of the agent with
respect to the task goals. In other words, for a given observation (state), the reward
measures how good it is to take a particular action. During training, an agent updates its
policy based on the rewards received for different state-action combinations. For more
information on the different types of agents and how they use the reward signal during
training, see “Reinforcement Learning Agents” on page 4-2.

In general, you provide a positive reward to encourage certain agent actions and a
negative reward (penalty) to discourage other actions. A well-designed reward signal
guides the agent to maximize the expectation of the long-term reward. What constitutes a
well-designed reward depends on your application and the agent goals.

For example, when an agent must perform a task for as long as possible, a common
strategy is to provide a smaller positive reward for each time step that the agent
successfully performs the task and a large penalty when the agent fails. This approach
encourages longer training episodes while heavily discouraging episodes that fail. For an
example that uses this approach, see “Train DQN Agent to Balance Cart-Pole System” on
page 5-10.

If your reward function incorporates multiple signals, such as position, velocity, and
control effort, it is important to consider the relative sizes of the signals and scale their
contributions to the reward signal accordingly.

You can specify either continuous or discrete reward signals. In either case, it is
important for the reward signal to provide rich information when the action and
observation signals change.

Continuous Rewards
A continuous reward function varies continuously with changes in the environment
observations and actions. In general, continuous reward signals improve convergence
during training and can lead to simpler network structures.

An example of a continuous reward is the Quadratic Regulator (QR) cost function, where
the long-term reward can be expressed as:

Ji = − sτ
TQτsτ + ∑

j = i

τ
s j

TQ js j + a j
TR ja j + 2s j

TN ja j

 Define Reward Signals

2-13

Where Qτ, Q, R, and N are the weight matrices (Qτ is the terminal weight matrix, applied
only at the end of the episode if applicable). Also, s is the observation vector, a is the
action vector, and τ is the terminal iteration of the episode. The instantaneous reward for
this is:

ri = si
TQisi + ai

TRiai + 2si
TNiai

This QR reward structure encourages driving s to zero with minimal action effort. A QR-
based reward structure is a good reward to choose for regulation or stationary point
problems, such as pendulum swing up or regulating the position of the double integrator.
For training examples that use a QR reward, see “Train DQN Agent to Swing Up and
Balance Pendulum” on page 5-46 and “Train DDPG Agent to Control Double Integrator
System” on page 5-38.

Smooth continuous rewards, such as the QR regulator, are good for fine tuning
parameters and can provide policies similar to optimal controllers (LQR/MPC).

Discrete Rewards
A discrete reward function varies discontinuously with changes in the environment
observations or actions. These types of reward signals can make convergence slower and
can require more complex network structures. Discrete rewards are usually implemented
as events that occur in the environment. For example, an agent could receive a positive
reward if it exceeds some target value or a penalty if it violates some performance
constraint.

While discrete rewards can slow down convergence, they can also guide the agent toward
better reward regions in the state space of the environment. For example, region-based
reward, such as a fixed reward when the agent is near a target location can emulate final-
state constraints. Also, a region-based penalty can encourage an agent to avoid certain
areas of the state space.

Mixed Rewards
In many cases, it is beneficial to provide a mixed reward signal that has a combination of
continuous and discrete reward components. The discrete reward signal can be used to
drive the system away from bad states, and the continuous reward signal can improve
convergence by providing a smooth reward near target states. For example, in “Train
DDPG Agent to Control Flying Robot” on page 5-116, the reward function has three
components: r1, r2, and r3.

2 Create Environments

2-14

r1 = 10 xt
2 + yt

2 + θt
2 < 0.5

r2 = − 100 xt ≥ 20 yt ≥ 20

r3 = − 0.2 Rt − 1 + Lt − 1
2 + 0.3 Rt − 1− Lt − 1

2 + 0.03xt
2 + 0.03yt

2 + 0.02θt
2

r = r1 + r2 + r3

Here:

• r1 is a region-based continuous reward that applies only near the target location of the
robot.

• r2 is a discrete signal that provides a large penalty when the robot moves far from the
target location.

• r3 is a continuous QR penalty that applies for all robot states.

See Also

More About
• “Create MATLAB Environments for Reinforcement Learning” on page 2-2
• “Create Simulink Environments for Reinforcement Learning” on page 2-6

 See Also

2-15

Load Predefined Grid World Environments
Reinforcement Learning Toolbox software provides several predefined grid world
environments for which the actions, observations, rewards, and dynamics are already
defined. You can use these environments to:

• Learn reinforcement learning concepts
• Gain familiarity with Reinforcement Learning Toolbox software features
• Test your own reinforcement learning agents

You can load the following predefined MATLAB grid world environments using the
rlPredefinedEnv function.

Environment Agent Task
Basic grid world Move from a starting location to a target location on a

two-dimensional grid by selecting moves from the
discrete action space {N,S,E,W}.

Waterfall grid world Move from a starting location to a target location on a
larger two-dimensional grid with unknown
deterministic or stochastic dynamics.

For more information on the properties of grid world environments, “Create Custom Grid
World Environments” on page 2-40.

You can also load predefined MATLAB control system environments. For more
information, see “Load Predefined Control System Environments” on page 2-24.

Basic Grid World
The basic grid world environment is a two-dimensional 5-by-5 grid with a starting
location, terminal location, and obstacles. The environment also contains a special jump
from state [2,4] to state [4,4]. The goal of the agent is to move from the starting location
to the terminal location while avoiding obstacles and maximizing the total reward.

To create a basic grid world environment, use the rlPredefinedEnv function. This
function creates an rlMDPEnv object representing the grid world.

env = rlPredefinedEnv('BasicGridWorld');

2 Create Environments

2-16

You can visualize the grid world environment using the plot function. The plot displays
the:

• Agent location as a red circle. By default, the agent starts in state [1,1].
• Terminal location as a blue square
• Obstacles as black squares

plot(env)

Actions

The agent can move in one of four possible directions (North, South, East, West).

Rewards

The agent receives the following rewards or penalties:

 Load Predefined Grid World Environments

2-17

• +10 reward for reaching the terminal state at [5,5]
• +5 reward for jumping from state [2,4] to state [4,4].
• -1 penalty for every other action

Deterministic Waterfall Grid Worlds
The deterministic waterfall grid world environment is a two-dimensional 8-by-7 grid with
a starting location and terminal location. The environment includes a waterfall that
pushes the agent towards the bottom of the grid. The goal of the agent is to move from
the starting location to the terminal location while maximizing the total reward.

To create a deterministic waterfall grid world, use the rlPredefinedEnv function. This
function creates an rlMDPEnv object representing the grid world.

env = rlPredefinedEnv('WaterFallGridWorld-Deterministic');

As with the basic grid world, you can visualize the environment, where the agent is a red
circle, and the terminal location is a blue square.

plot(env)

2 Create Environments

2-18

Actions

The agent can move in one of four possible directions (North, South, East, West).

Rewards

The agent receives the following rewards or penalties:

• +10 reward for reaching the terminal state at [4,5]
• -1 penalty for every other action

Waterfall Dynamics

In this environment, a waterfall pushes the agent towards the bottom of the grid.

 Load Predefined Grid World Environments

2-19

The intensity of the waterfall varies between the columns, as shown at the top of the
preceding figure. When the agent moves into a column with a nonzero intensity, the
waterfall pushes it downward by the indicated number of squares. For example, if the
agent goes East from state [5,2], it will reach state [7,3].

2 Create Environments

2-20

Stochastic Waterfall Grid Worlds
The stochastic waterfall grid world environment is a two-dimensional 8-by-7 grid with a
starting location and terminal locations. The environment includes a waterfall that pushes
the agent towards the bottom of the grid with a stochastic intensity. The goal of the agent
is to move from the starting location to the target terminal location while avoiding the
penalty terminal states along the bottom of the grid and maximizing the total reward.

To create a stochastic waterfall grid world, use the rlPredefinedEnv function. This
function creates an rlMDPEnv object representing the grid world.

env = rlPredefinedEnv('WaterFallGridWorld-Stochastic');

As with the basic grid world, you can visualize the environment, where the agent is a red
circle, and the terminal location is a blue square.

plot(env)

 Load Predefined Grid World Environments

2-21

Actions

The agent can move in one of four possible directions (North, South, East, West).

Rewards

The agent receives the following rewards or penalties:

• +10 reward for reaching the terminal state at [4,5]
• -10 penalty for reaching any terminal state in the bottom row of the grid
• -1 penalty for every other action

Waterfall Dynamics

In this environment, a waterfall pushes the agent towards the bottom of the grid with a
stochastic intensity. The baseline intensity matches the intensity of the deterministic

2 Create Environments

2-22

waterfall environment. However, in the stochastic waterfall case, the agent has an equal
chance of experiencing either the indicated intensity, one level above that intensity, or one
level below that intensity. For example, if the agent goes East from state [5,2], it has an
equal chance of reaching either state [6,3], [7,3], or [8,3].

See Also
rlMDPEnv | rlPredefinedEnv | train

More About
• “Create MATLAB Environments for Reinforcement Learning” on page 2-2
• “Load Predefined Control System Environments” on page 2-24
• “Train Reinforcement Learning Agents” on page 5-2

 See Also

2-23

Load Predefined Control System Environments
Reinforcement Learning Toolbox software provides several predefined control system
environments for which the actions, observations, rewards, and dynamics are already
defined. You can use these environments to:

• Learn reinforcement learning concepts
• Gain familiarity with Reinforcement Learning Toolbox software features
• Test your own reinforcement learning agents

You can load the following predefined MATLAB control system environments using the
rlPredefinedEnv function.

Environment Agent Task
Cart-pole Balance a pole on a moving cart by applying forces to

the cart using either a discrete or continuous action
space.

Double integrator Control a second-order dynamic system using either a
discrete or continuous action space.

Simple pendulum with image
observation

Swing up and balance a simple pendulum using either
a discrete or continuous action space.

You can also load predefined MATLAB grid world environments. For more information,
see “Load Predefined Grid World Environments” on page 2-16.

Cart-Pole Environments
The goal of the agent in the predefined cart-pole environments is to balance a pole on a
moving cart by applying horizontal forces to the cart. The pole is considered successfully
balanced if both of the following conditions are satisfied:

• The pole angle remains within a given threshold of the vertical position, where the
vertical position is zero radians.

• The magnitude of the cart position remains below a given threshold.

There are two cart-pole environment variants, which differ by the agent action space.

• Discrete — Agent can apply a force of either Fmax or -Fmax to the cart, where Fmax is the
MaxForce property of the environment.

2 Create Environments

2-24

• Continuous — Agent can apply any force within the range [-Fmax,Fmax].

To create a cart-pole environment, use the rlPredefinecdEnv function.

• Discrete action space

env = rlPredefinedEnv('CartPole-Discrete');

• Continuous action space

env = rlPredefinedEnv('CartPole-Continuous');

You can visualize the cart-pole environment using the plot function. The plot displays the
cart as a blue square and the pole as a red rectangle.

plot(env)

To visualize the environment during training, call plot before training and keep the
visualization figure open.

For examples that train agents in cart-pole environments, see:

• “Train DQN Agent to Balance Cart-Pole System” on page 5-10
• “Train PG Agent to Balance Cart-Pole System” on page 5-18
• “Train AC Agent to Balance Cart-Pole System” on page 5-24

 Load Predefined Control System Environments

2-25

Environment Properties

Property Description Default
Gravity Acceleration due to gravity in meters per

second
9.8

MassCart Mass of the cart in kilograms 1
MassPole Mass of the pole in kilograms 0.1
Length Half the length of the pole in meters 0.5
MaxForce Maximum horizontal force magnitude in

newtons
10

Ts Sample time in seconds 0.02
ThetaThresholdRad
ians

Pole angle threshold in radians 0.2094

XThreshold Cart position threshold in meters 2.4
RewardForNotFalli
ng

Reward for each time step the pole is
balanced

1

PenaltyForFalling Reward penalty for failing to balance the
pole

Discrete: -5

Continuous: -50
State Environment state, specified as a column

vector with the following state variables:

• Cart position
• Derivative of cart position
• Pole angle
• Derivative of pole angle

[0 0 0 0]'

Actions

In the cart-pole environments, the agent interacts with the environment using a single
action signal, the horizontal force applied to the cart. The environment contains a
specification object for this action signal. For the environment with a:

• Discrete action space, the specification is an rlFiniteSetSpec object.
• Continuous action space, the specification is an rlNumericSpec object.

2 Create Environments

2-26

For more information on obtaining action specifications from an environment, see
getActionInfo.

Observations

In the cart-pole system, the agent can observe all the environment state variables in
env.State. For each state variable, the environment contains an rlNumericSpec
observation specification. All the states are continuous and unbounded.

For more information on obtaining observations specifications from an environment, see
getObservationInfo.

Reward

The reward signal for this environment consists of two components:

• A positive reward for each time step that the pole is balanced; that is, the cart and
pole both remain within their specified threshold ranges. This reward accumulates
over the entire training episode. To control the size of this reward, use the
RewardForNotFalling property of the environment.

• A one-time negative penalty if either the pole or cart moves outside of their threshold
ranges. At this point, the training episode stops. To control the size of this penalty, use
the PenaltyForFalling property of the environment.

Double Integrator Environments
The goal of the agent in the predefined double integrator environments is to control the
position of a mass in a second-order system by applying a force input. Specifically, the
second-order system is a double integrator with a gain.

Training episodes for these environments end when either of the following events occur:

• The mass moves beyond a given threshold from the origin.
• The norm of the state vector is less than a given threshold.

There are two double integrator environment variants, which differ by the agent action
space.

• Discrete — Agent can apply a force of either Fmax or -Fmax to the cart, where Fmax is the
MaxForce property of the environment.

 Load Predefined Control System Environments

2-27

• Continuous — Agent can apply any force within the range [-Fmax,Fmax].

To create a double integrator environment, use the rlPredefinedEnv function.

• Discrete action space

env = rlPredefinedEnv('DoubleIntegrator-Discrete');
• Continuous action space

env = rlPredefinedEnv('DoubleIntegrator-Continuous');

You can visualize the double integrator environment using the plot function. The plot
displays the mass as a red rectangle.

plot(env)

To visualize the environment during training, call plot before training and keep the
visualization figure open.

For examples that train agents in double integrator environments, see:

• “Train DDPG Agent to Control Double Integrator System” on page 5-38
• “Train PG Agent with Baseline to Control Double Integrator System” on page 5-31

2 Create Environments

2-28

Environment Properties

Property Description Default
Gain Gain for the double integrator 1
Ts Sample time in seconds 0.1
MaxDistance Distance magnitude threshold in meters 5
GoalThreshold State norm threshold 0.01
Q Weight matrix for observation component of

reward signal
[10 0; 0 1]

R Weight matrix for action component of
reward signal

0.01

MaxForce Maximum input force in newtons Discrete: 2

Continuous: Inf
State Environment state, specified as a column

vector with the following state variables:

• Mass position
• Derivative of mass position

[0 0]'

Actions

In the double integrator environments, the agent interacts with the environment using a
single action signal, the force applied to the mass. The environment contains a
specification object for this action signal. For the environment with a:

• Discrete action space, the specification is an rlFiniteSetSpec object.
• Continuous action space, the specification is an rlNumericSpec object.

For more information on obtaining action specifications from an environment, see
getActionInfo.

Observations

In the double integrator system, the agent can observe both of the environment state
variables in env.State. For each state variable, the environment contains an
rlNumericSpec observation specification. Both states are continuous and unbounded.

 Load Predefined Control System Environments

2-29

For more information on obtaining observation specifications from an environment, see
getObservationInfo.

Reward

The reward signal for this environment is the discrete-time equivalent of the following
continuous-time reward, which is analogous to the cost function of an LQR controller.

reward = −∫ x′Qx + u′Ru dt

Here:

• Q and R are environment properties.
• x is the environment state vector.
• u is the input force.

This reward is the episodic reward; that is, the cumulative reward across the entire
training episode.

Simple Pendulum Environments with Image Observation
This environment is a simple frictionless pendulum that is initially hanging in a downward
position. The training goal is to make the pendulum stand upright without falling over
using minimal control effort.

There are two simple pendulum environment variants, which differ by the agent action
space.

• Discrete — Agent can apply a torque of -2, -1, 0, 1, or 2 to the pendulum.
• Continuous — Agent can apply any torque within the range [-2,2].

To create a simple pendulum environment, use the rlPredefinedEnv function.

• Discrete action space

env = rlPredefinedEnv('SimplePendulumWithImage-Discrete');
• Continuous action space

env = rlPredefinedEnv('SimplePendulumWithImage-Continuous');

For examples that train an agent in this environment, see:

2 Create Environments

2-30

• “Train DDPG Agent to Swing Up and Balance Pendulum with Image Observation” on
page 5-83

• “Create Agent Using Deep Network Designer and Train Using Image Observations” on
page 5-93

Environment Properties

Property Description Default
Mass Pendulum mass 1
RodLength Pendulum length 1
RodInertia Pendulum moment of inertia 0
Gravity Acceleration due to gravity in meters per

second
9.81

DampingRatio Damping on pendulum motion 0
MaximumTorque Maximum input torque in Newtons 2
Ts Sample time in seconds 0.05
State Environment state, specified as a column

vector with the following state variables:

• Pendulum angle
• Pendulum angular velocity

[0 0]'

Q Weight matrix for observation component of
reward signal

[1 0;0 0.1]

R Weight matrix for action component of
reward signal

1e-3

Actions

In the simple pendulum environments, the agent interacts with the environment using a
single action signal, the torque applied at the base of the pendulum. The environment
contains a specification object for this action signal. For the environment with a:

• Discrete action space, the specification is an rlFiniteSetSpec object.
• Continuous action space, the specification is an rlNumericSpec object.

For more information on obtaining action specifications from an environment, see
getActionInfo.

 Load Predefined Control System Environments

2-31

Observations

In the simple pendulum environment, the agent receives the following observation signals

• 50-by-50 grayscale image of the pendulum position
• Derivative of the pendulum angle

For each observation signal, the environment contains an rlNumericSpec observation
specification. All the observations are continuous and unbounded.

For more information on obtaining observation specifications from an environment, see
getObservationInfo.

Reward

The reward signal for this environment is:

rt = − θt
2 + 0.1 ∗ θ̇t

2 + 0.001 ∗ ut − 1
2

Here:

• θt is the pendulum angle of displacement from the upright position.
• θ̇t is the derivative of the pendulum angle.
• ut-1 is the control effort from the previous time step.

See Also
rlPredefinedEnv | train

More About
• “Create MATLAB Environments for Reinforcement Learning” on page 2-2
• “Load Predefined Grid World Environments” on page 2-16
• “Train Reinforcement Learning Agents” on page 5-2

2 Create Environments

2-32

Load Predefined Simulink Environments
Reinforcement Learning Toolbox software provides predefined Simulink environments for
which the actions, observations, rewards, and dynamics are already defined. You can use
these environments to:

• Learn reinforcement learning concepts
• Gain familiarity with Reinforcement Learning Toolbox software features
• Test your own reinforcement learning agents

You can load the following predefined Simulink environments using the
rlPredefinedEnv function.

Environment Agent Task
Simple pendulum Simulink
model

Swing up and balance a simple pendulum using either
a discrete or continuous action space.

Cart-pole Simscape™ model Balance a pole on a moving cart by applying forces to
the cart using either a discrete or continuous action
space.

For predefined Simulink environments, the environment dynamics, observations, and
reward signal are defined in a corresponding Simulink model. The rlPredefinedEnv
function creates a SimulinkEnvWithAgent object that the train function uses to
interact with the Simulink model.

Simple Pendulum Simulink Model
This environment is a simple frictionless pendulum that is initially hanging in a downward
position. The training goal is to make the pendulum stand upright without falling over
using minimal control effort. The model for this environment is defined in the
rlSimplePendulumModel Simulink model.

open_system('rlSimplePendulumModel')

 Load Predefined Simulink Environments

2-33

There are two simple pendulum environment variants, which differ by the agent action
space.

• Discrete — Agent can apply a torque of either Tmax, 0, or -Tmax to the pendulum, where
Tmax is the max_tau variable in the model workspace.

• Continuous — Agent can apply any torque within the range [-Tmax,Tmax].

To create a simple pendulum environment, use the rlPredefinedEnv function.

• Discrete action space

env = rlPredefinedEnv('SimplePendulumModel-Discrete');
• Continuous action space

env = rlPredefinedEnv('SimplePendulumModel-Continuous');

For examples that train agents in the simple pendulum environment, see:

2 Create Environments

2-34

• “Train DQN Agent to Swing Up and Balance Pendulum” on page 5-46
• “Train DDPG Agent to Swing Up and Balance Pendulum” on page 5-55

Actions

In the simple pendulum environments, the agent interacts with the environment using a
single action signal, the torque applied at the base of the pendulum. The environment
contains a specification object for this action signal. For the environment with a:

• Discrete action space, the specification is an rlFiniteSetSpec object.
• Continuous action space, the specification is an rlNumericSpec object.

For more information on obtaining action specifications from an environment, see
getActionInfo.

Observations

In the simple pendulum environment, the agent receives the following three observation
signals, which are constructed within the create observations subsystem.

• Sine of the pendulum angle
• Cosine of the pendulum angle
• Derivative of the pendulum angle

For each observation signal, the environment contains an rlNumericSpec observation
specification. All the observations are continuous and unbounded.

For more information on obtaining observation specifications from an environment, see
getObservationInfo.

Reward

The reward signal for this environment, which is constructed in the calculate reward
subsystem, is:

rt = − θt
2 + 0.1 ∗ θ̇t

2 + 0.001 ∗ ut − 1
2

Here:

• θt is the pendulum angle of displacement from the upright position.

 Load Predefined Simulink Environments

2-35

• θ̇t is the derivative of the pendulum angle.
• ut-1 is the control effort from the previous time step.

Cart-Pole Simscape Model
The goal of the agent in the predefined cart-pole environments is to balance a pole on a
moving cart by applying horizontal forces to the cart. The pole is considered successfully
balanced if both of the following conditions are satisfied:

• The pole angle remains within a given threshold of the vertical position, where the
vertical position is zero radians.

• The magnitude of the cart position remains below a given threshold.

The model for this environment is defined in the rlCartPoleSimscapeModel Simulink
model. The dynamics of this model are defined using Simscape Multibody™.

open_system('rlCartPoleSimscapeModel')

2 Create Environments

2-36

In the Environment subsystem, the model dynamics are defined using Simscape
components and the reward and observation are constructed using Simulink blocks.

open_system('rlCartPoleSimscapeModel/Environment')

There are two cart-pole environment variants, which differ by the agent action space.

• Discrete — Agent can apply a force of 15, 0, or -15 to the cart.
• Continuous — Agent can apply any force within the range [-15,15].

To create a cart-pole environment, use the rlPredefinedEnv function.

• Discrete action space

env = rlPredefinedEnv('CartPoleSimscapeModel-Discrete');
• Continuous action space

env = rlPredefinedEnv('CartPoleSimscapeModel-Continuous');

For an example that trains an agent in this cart-pole environment, see “Train DDPG Agent
to Swing Up and Balance Cart-Pole System” on page 5-64.

 Load Predefined Simulink Environments

2-37

Actions

In the cart-pole environments, the agent interacts with the environment using a single
action signal, the force applied to the cart. The environment contains a specification
object for this action signal. For the environment with a:

• Discrete action space, the specification is an rlFiniteSetSpec object.
• Continuous action space, the specification is an rlNumericSpec object.

For more information on obtaining action specifications from an environment, see
getActionInfo.

Observations

In the cart-pole environment, the agent receives the following five observation signals.

• Sine of the pole angle
• Cosine of the pole angle
• Derivative of the pendulum angle
• Cart position
• Derivative of cart position

For each observation signal, the environment contains an rlNumericSpec observation
specification. All the observations are continuous and unbounded.

For more information on obtaining observation specifications from an environment, see
getObservationInfo.

Reward

The reward signal for this environment is the sum of three components (r = rqr + rn + rp):

• A quadratic regulator control reward, constructed in the Environment/qr reward
subsystem.

rqr = − 0.1 ∗ x2 + 0.5 ∗ θ2 + 0.005 ∗ ut − 1
2

• An additional reward for when the pole is near the upright position, constructed in the
Environment/near upright reward subsystem.

rn = 10 ∗ θ < 0.175

2 Create Environments

2-38

• A cart limit penalty, constructed in the Environment/x limit penalty subsystem.
This subsystem generates a negative reward when the magnitude of the cart position
exceeds a given threshold.

rp = − 100 ∗ x ≥ 3.5

Here:

• x is the cart position.
• θ is the pole angle of displacement from the upright position.
• ut-1 is the control effort from the previous time step.

See Also
Blocks
RL Agent

Functions
rlPredefinedEnv | train

More About
• “Create Simulink Environments for Reinforcement Learning” on page 2-6
• “Train Reinforcement Learning Agents” on page 5-2

 See Also

2-39

Create Custom Grid World Environments
A grid world is a two dimensional, cell based environment where the agent starts from
one cell and moves towards the terminal cell, while collecting as much reward as
possible. Grid world environments are useful for applying reinforcement learning
algorithms to discover optimal paths and policies for agents on the grid to get to their
terminal goal in the least number of moves.

Reinforcement Learning Toolbox lets you create custom MATLAB grid world
environments for your own applications. To create a custom grid world environment:

1 Create grid world model.
2 Configure the grid world model.
3 Use the grid world model to create your own grid world environment.

Grid World Model
You can create your own grid world model using the createGridWorld function. Specify
the grid size when creating the GridWorld model object.

2 Create Environments

2-40

The GridWorld object has the following properties:

Property Read-
Only

Description

GridSize Yes Dimensions of the grid world, displayed as a [m,n] vector.
Here, m represents the number of rows while n is the number of
columns of the grid.

CurrentSta
te

No Name of the current state of the agent, specified as a string.
You can use this property to set the initial state of the agent.
The agent always starts from the [1,1] cell, by default.

The agent starts from the CurrentState once you use the
reset function in the rlMDPEnv environment object.

States Yes A string vector containing the state names of the grid world.
For instance, for a 2-by-2 grid world model GW:

GW.States =

" 1,1 "
" 2,1 "
" 1,2 "
" 2,2 "

.

Actions Yes A string vector containing the list of possible actions that the
agent can use. You can set the action when you create the grid
world model by using the moves argument:

GW = createGridWorld(m,n,moves)

Specify moves as either 'Standard' or 'Kings'.

moves = 'Standard'

GW.Actions = ['N';'S';'E';'W']

moves = 'Kings'

GW.Actions = ['N';'S';'E';'W';'NE';'NW';'SE';'SW']

 Create Custom Grid World Environments

2-41

Property Read-
Only

Description

T No State transition matrix, specified as a 3-D array. T is a
probability matrix that indicates how likely the agent will move
from the current state s to any possible next states s' by
performing action a.

T can be denoted as:

T s, s′, a = probability s′ s, a .

For instance, consider a 5-by-5 deterministic grid world object
GW with the agent in cell [3,1]. Extract the state transition
matrix for North and observe the state transition matrix when
the agent moves North.

northStateTransition = GW.T(:,:,1)

2 Create Environments

2-42

Property Read-
Only

Description

From the above figure, the value of
northStateTransition(3,2) is 1 since the agent will move
from cell [3,1] to cell [2,1] with action 'N'. A probability of
1 indicates that from a given state, if the agent goes North, it
has 100% chance of moving one cell North on the grid. For an
example on setting up the state transition matrix, see “Train
Reinforcement Learning Agent in Basic Grid World” on page 1-
11.

 Create Custom Grid World Environments

2-43

Property Read-
Only

Description

R No Reward transition matrix, specified as a 3-D array. R determines
how much reward the agent receives after performing an action
in the environment. R has the same shape and size as state
transition matrix T.

Reward transition matrix R can be denoted as

r = R s, s′, a .

Set up R such that there is a reward to the agent after every
action. For instance, you can set up a positive reward if the
agent transitions over obstacle states and when it reaches the
terminal state. You can also set up a default reward of -11 for
all actions the agent takes, independent of the current state
and next state. For an example on setting up the reward
transition matrix, see “Train Reinforcement Learning Agent in
Basic Grid World” on page 1-11.

2 Create Environments

2-44

Property Read-
Only

Description

ObstacleSt
ates

No ObstacleStates are states that cannot be reached in the grid
world, specified as a string vector. Consider the following 5-
by-5 grid world model GW.

The black cells are obstacle states, and you can specify them
by:

GW.ObstacleStates = ["[3,3]";"[3,4]";"[3,5]";"[4,3]"];

For a workflow example, see “Train Reinforcement Learning
Agent in Basic Grid World” on page 1-11.

TerminalSt
ates

No TerminalStates are the final states in the grid world,
specified as a string vector. Consider the previous 5-by-5 grid
world model GW. The blue cell is the terminal state and you can
specify it by:

GW.TerminalStates = "[5,5]";

For a workflow example, see “Train Reinforcement Learning
Agent in Basic Grid World” on page 1-11.

 Create Custom Grid World Environments

2-45

Grid World Environment
You can create a Markov decision process (MDP) environment using rlMDPEnv from the
grid world model from the previous step. MDP is a discrete time stochastic control
process. It provides a mathematical framework for modeling decision making in situations
where outcomes are partly random and partly under the control of the decision maker.
The agent uses the grid world environment object rlMDPEnv to interact with the grid
world model object GridWorld.

For more information, see rlMDPEnv and “Train Reinforcement Learning Agent in Basic
Grid World” on page 1-11.

See Also
createGridWorld | rlMDPEnv | rlPredefinedEnv

More About
• “Train Reinforcement Learning Agent in Basic Grid World” on page 1-11

2 Create Environments

2-46

Create MATLAB Environment using Custom Functions
This example shows how to create a cart-pole environment by supplying custom dynamic
functions in MATLAB®.

Using the rlFunctionEnv function, you can create a MATLAB reinforcement learning
environment from an observation specification, action specification, and user-defined
step and reset functions. You can then train a reinforcement learning agent in this
environment. The necessary step and reset functions are already defined for this
example.

For more information on creating reinforcement learning environments see “Create
MATLAB Environments for Reinforcement Learning” on page 2-2 and “Create Simulink
Environments for Reinforcement Learning” on page 2-6.

Cart-Pole MATLAB Environment

Cart-pole environment is a pole attached to an unactuated joint on a cart, which moves
along a frictionless track. The training goal is to make the pendulum stand upright
without falling over.

For this environment:

• The upward balanced pendulum position is 0 radians, and the downward hanging
position is pi radians.

 Create MATLAB Environment using Custom Functions

2-47

• The pendulum starts upright with an initial angle of +/- 0.05 radians.
• The force action signal from the agent to the environment is from -10 to 10 N.
• The observations from the environment are the cart position, cart velocity, pendulum

angle, and pendulum angle derivative.
• The episode terminates if the pole is more than 12 degrees from vertical, or the cart

moves more than 2.4 m from the original position.
• A reward of +1 is provided for every time step that the pole remains upright. A penalty

of -10 is applied when the pendulum falls.

For more information on this model, see “Load Predefined Control System Environments”
on page 2-24.

Observation and Action Specifications

The observations from the environment are the cart position, cart velocity, pendulum
angle, and pendulum angle derivative.

ObservationInfo = rlNumericSpec([4 1]);
ObservationInfo.Name = 'CartPole States';
ObservationInfo.Description = 'x, dx, theta, dtheta';

The environment has a discrete action space where the agent can apply one of two
possible force values to the cart: -10 or 10 N.

ActionInfo = rlFiniteSetSpec([-10 10]);
ActionInfo.Name = 'CartPole Action';

For more information on specifying environment actions and observations, see
rlNumericSpec and rlFiniteSetSpec.

Create Environment using Function Names

To define a custom environment, first specify the custom step and reset functions.
These functions must be in your current working folder or on the MATLAB path.

The custom reset function sets the default state of the environment. This function must
have the following signature.

[InitialObservation,LoggedSignals] = myResetFunction()

To pass information from one step to the next, such as the environment state, use
LoggedSignals. For this example, LoggedSignals contains the states of the cart-pole

2 Create Environments

2-48

environment, position and velocity of the cart, the pendulum angle, and its derivative. The
reset function sets the cart angle to a random value each time the environment is reset.

For this example, use the custom reset function defined in myResetFunction.m.

type myResetFunction.m

function [InitialObservation, LoggedSignal] = myResetFunction()
% Reset function to place custom cart-pole environment into a random
% initial state.

% Theta (randomize)
T0 = 2 * 0.05 * rand() - 0.05;
% Thetadot
Td0 = 0;
% X
X0 = 0;
% Xdot
Xd0 = 0;

% Return initial environment state variables as logged signals.
LoggedSignal.State = [T0;Td0;X0;Xd0];
InitialObservation = LoggedSignal.State;

end

The custom step function specifies how the environment advances to the next state
based on a given action. This function must have the following signature.

[Observation,Reward,IsDone,LoggedSignals] = myStepFunction(Action,LoggedSignals)

To get the new state, the environment applies the dynamic equation on the current state
stored in LoggedSignals, which is similar to giving an initial condition to a differential
equation. The new state is stored in LoggedSignals and returned as an output.

For this example, use the custom step function defined in myStepFunction.m. For
implementation simplicity, this function redefines physical constants, such as the cart
mass, every time step is executed.

type myStepFunction.m

function [NextObs,Reward,IsDone,LoggedSignals] = myStepFunction(Action,LoggedSignals)
% Custom step function to construct cart pole environment for the function
% name case.
%

 Create MATLAB Environment using Custom Functions

2-49

% This function applies the given action to the environment and evaluates
% the system dynamics for one simulation step.

% Define the environment constants.

% Acceleration due to gravity in m/s^2
Gravity = 9.8;
% Mass of the cart
CartMass = 1.0;
% Mass of the pole
PoleMass = 0.1;
% Half the length of the pole
HalfPoleLength = 0.5;
% Max Force the input can apply
MaxForce = 10;
% Sample time
Ts = 0.02;
% Pole angle at which to fail the episode
AngleThreshold = 12 * pi/180;
% Cart distance at which to fail the episode
DisplacementThreshold = 2.4;
% Reward each time step the cart-pole is balanced
RewardForNotFalling = 1;
% Penalty when the cart-pole fails to balance
PenaltyForFalling = -10;

% Check if the given action is valid
if ~ismember(Action,[-MaxForce MaxForce])
 error('Action must be %g for going left and %g for going right.',...
 -MaxForce,MaxForce);
end
Force = Action;

% Unpack the state vector from the logged signals
State = LoggedSignals.State;
XDot = State(2);
Theta = State(3);
ThetaDot = State(4);

% Cache to avoid recomputation
CosTheta = cos(Theta);
SinTheta = sin(Theta);
SystemMass = CartMass + PoleMass;
temp = (Force + PoleMass*HalfPoleLength*ThetaDot*ThetaDot*SinTheta)/SystemMass;

2 Create Environments

2-50

% Apply motion equations
ThetaDotDot = (Gravity*SinTheta - CosTheta*temp) / ...
 (HalfPoleLength*(4.0/3.0 - PoleMass*CosTheta*CosTheta/SystemMass));
XDotDot = temp - PoleMass*HalfPoleLength*ThetaDotDot*CosTheta/SystemMass;

% Euler integration
LoggedSignals.State = State + Ts.*[XDot;XDotDot;ThetaDot;ThetaDotDot];

% Transform state to observation
NextObs = LoggedSignals.State;

% Check terminal condition
X = NextObs(1);
Theta = NextObs(3);
IsDone = abs(X) > DisplacementThreshold || abs(Theta) > AngleThreshold;

% Get reward
if ~IsDone
 Reward = RewardForNotFalling;
else
 Reward = PenaltyForFalling;
end

end

Construct the custom environment using the defined observation specification, action
specification, and function names.

env = rlFunctionEnv(ObservationInfo,ActionInfo,'myStepFunction','myResetFunction');

To verify the operation of your environment, rlFunctionEnv automatically calls
validateEnvironment after creating the environment.

Create Environment using Function Handles

You can also define custom functions that have additional input arguments beyond the
minimum required set. For example, to pass the additional arguments arg1 and arg2 to
both the step and rest function, use:

[InitialObservation,LoggedSignals] = myResetFunction(arg1,arg2)
[Observation,Reward,IsDone,LoggedSignals] = myStepFunction(Action,LoggedSignals,arg1,arg2)

To use these functions with rlFunctionEnv, you must use anonymous functions handles.

 Create MATLAB Environment using Custom Functions

2-51

ResetHandle = @myResetFunction(arg1,arg2);
StepHandle = @(Action,LoggedSignals) myStepFunction(Action,LoggedSignals,arg1,arg2);

For more information, see “Anonymous Functions” (MATLAB).

Using additional input arguments can create a more efficient environment
implementation. For example, myStepFunction2.m contains a custom step function
that takes the environment constants as an input argument (envConstants). By doing
so, this function avoids redefining the environment constants at each step.

type myStepFunction2.m

function [NextObs,Reward,IsDone,LoggedSignals] = myStepFunction2(Action,LoggedSignals,EnvConstants)
% Custom step function to construct cart pole environment for the function
% handle case.
%
% This function applies the given action to the environment and evaluates
% the system dynamics for one simulation step.

% Check if the given action is valid
if ~ismember(Action,[-EnvConstants.MaxForce EnvConstants.MaxForce])
 error('Action must be %g for going left and %g for going right.',...
 -EnvConstants.MaxForce,EnvConstants.MaxForce);
end
Force = Action;

% Unpack the state vector from the logged signals
State = LoggedSignals.State;
XDot = State(2);
Theta = State(3);
ThetaDot = State(4);

% Cache to avoid recomputation
CosTheta = cos(Theta);
SinTheta = sin(Theta);
SystemMass = EnvConstants.MassCart + EnvConstants.MassPole;
temp = (Force + EnvConstants.MassPole*EnvConstants.Length*ThetaDot*ThetaDot*SinTheta)/SystemMass;

% Apply motion equations
ThetaDotDot = (EnvConstants.Gravity*SinTheta - CosTheta*temp)...
 / (EnvConstants.Length*(4.0/3.0 - EnvConstants.MassPole*CosTheta*CosTheta/SystemMass));
XDotDot = temp - EnvConstants.MassPole*EnvConstants.Length*ThetaDotDot*CosTheta/SystemMass;

% Euler integration
LoggedSignals.State = State + EnvConstants.Ts.*[XDot;XDotDot;ThetaDot;ThetaDotDot];

2 Create Environments

2-52

% Transform state to observation
NextObs = LoggedSignals.State;

% Check terminal condition
X = NextObs(1);
Theta = NextObs(3);
IsDone = abs(X) > EnvConstants.XThreshold || abs(Theta) > EnvConstants.ThetaThresholdRadians;

% Get reward
if ~IsDone
 Reward = EnvConstants.RewardForNotFalling;
else
 Reward = EnvConstants.PenaltyForFalling;
end

end

Create the structure that contains the environment constants.

% Acceleration due to gravity in m/s^2
envConstants.Gravity = 9.8;
% Mass of the cart
envConstants.MassCart = 1.0;
% Mass of the pole
envConstants.MassPole = 0.1;
% Half the length of the pole
envConstants.Length = 0.5;
% Max Force the input can apply
envConstants.MaxForce = 10;
% Sample time
envConstants.Ts = 0.02;
% Angle at which to fail the episode
envConstants.ThetaThresholdRadians = 12 * pi/180;
% Distance at which to fail the episode
envConstants.XThreshold = 2.4;
% Reward each time step the cart-pole is balanced
envConstants.RewardForNotFalling = 1;
% Penalty when the cart-pole fails to balance
envConstants.PenaltyForFalling = -5;

Create an anonymous function handle to the custom step function, passing
envConstants as an additional input argument. Because envConstants is available at

 Create MATLAB Environment using Custom Functions

2-53

the time that StepHandle is created, the function handle includes those values. The
values persist within the function handle even if you clear the variables.

StepHandle = @(Action,LoggedSignals) myStepFunction2(Action,LoggedSignals,envConstants);

Use the same reset function, specifying it as a function handle rather than by using its
name.

ResetHandle = @myResetFunction;

Create the environment using the custom function handles.

env2 = rlFunctionEnv(ObservationInfo,ActionInfo,StepHandle,ResetHandle);

Validate Custom Functions

Before training an agent in your environment, it is best practice to validate the behavior
of your custom functions. To do so, you can initialize your environment using the reset
function and make one simulation step using the step function. For reproducibility, set
the random generator seed before validation.

Validate the environment created using function names.

rng(0);
InitialObs = reset(env)

InitialObs = 4×1

 0.0315
 0
 0
 0

[NextObs,Reward,IsDone,LoggedSignals] = step(env,10);
NextObs

NextObs = 4×1

 0.0315
 0.1951
 0
 -0.2927

Validate the environment created using function handles.

2 Create Environments

2-54

rng(0);
InitialObs2 = reset(env2)

InitialObs2 = 4×1

 0.0315
 0
 0
 0

[NextObs2,Reward2,IsDone2,LoggedSignals2] = step(env2,10);
NextObs

NextObs = 4×1

 0.0315
 0.1951
 0
 -0.2927

In both cases, the environment initializes and steps successfully, producing the same state
values in NextObs.

See Also
rlFunctionEnv

More About
• “Create MATLAB Environments for Reinforcement Learning” on page 2-2
• “Create Custom MATLAB Environment from Template” on page 2-56

 See Also

2-55

Create Custom MATLAB Environment from Template
You can create simpler custom reinforcement learning environments using custom
functions, as described in “Create MATLAB Environment using Custom Functions” on
page 2-47.

Alternatively, you can define a custom reinforcement learning environment by creating
and modifying a template environment class. You can use a custom template environment
to:

• Implement more complex environment dynamics.
• Add custom visualizations to your environment.
• Create an interface to third-party libraries defined in languages such as C++, Java®,

or Python®. For more information, see “External Language Interfaces” (MATLAB).

For more information about creating MATLAB classes, see “User-Defined Classes”
(MATLAB).

Create Template Class
To define your custom environment, first create the template class file, specifying the
name of the class. For this example, name the class MyEnvironment.

rlCreateEnvTemplate("MyEnvironment")

The software creates and opens the template class file. The template class is a subclass of
the rl.env.MATLABEnvironment abstract class, as shown in the class definition at the
start of the template file. This abstract class is the same one used by the other MATLAB
reinforcement learning environment objects.

classdef MyEnvironment < rl.env.MATLABEnvironment

By default, the template class implements a simple cart-pole balancing model similar to
the cart-pole predefined environments described in “Load Predefined Control System
Environments” on page 2-24.

To define your environment dynamics modify the template class, specifying the following:

• Environment properties
• Required environment methods

2 Create Environments

2-56

• Optional environment methods

Environment Properties
In the properties section of the template, specify any parameters necessary for
creating and simulating the environment. These parameters can include:

• Physical constants — The sample environment defines the acceleration due to gravity
(Gravity).

• Environment geometry — The sample environment defines the cart and pole masses
(CartMass and PoleMass and the half-length of the pole (HalfPoleLength).)

• Environment constraints — The sample environment defines the pole angle and cart
distance thresholds (AngleThreshold, and DisplacementThreshold). The
environment uses these values to detect when a training episode is finished.

• Variables required for evaluating the environment — The sample environment defines
the state vector (State) and a flag for indicating when an episode is finished (IsDone)

• Constants for defining the actions or observation spaces — The sample environment
defines the maximum force for the action space (MaxForce).

• Constants for calculating the reward signal — The sample environment defines the
constants RewardForNotFalling and PenaltyForFalling.

properties
 % Specify and initialize environment's necessary properties
 % Acceleration due to gravity in m/s^2
 Gravity = 9.8

 % Mass of the cart
 CartMass = 1.0

 % Mass of the pole
 PoleMass = 0.1

 % Half the length of the pole
 HalfPoleLength = 0.5

 % Max Force the input can apply
 MaxForce = 10

 % Sample time
 Ts = 0.02

 Create Custom MATLAB Environment from Template

2-57

 % Angle at which to fail the episode (radians)
 AngleThreshold = 12 * pi/180

 % Distance at which to fail the episode
 DisplacementThreshold = 2.4

 % Reward each time step the cart-pole is balanced
 RewardForNotFalling = 1

 % Penalty when the cart-pole fails to balance
 PenaltyForFalling = -10
end

properties
 % Initialize system state [x,dx,theta,dtheta]'
 State = zeros(4,1)
end

properties(Access = protected)
 % Initialize internal flag to indicate episode termination
 IsDone = false
end

Required Functions
A reinforcement learning environment requires the following functions to be defined. The
getObservationInfo, getActionInfo, sim, and validateEnvironment functions
are already defined in the base abstract class. To create your environment, you must
define the constructor, reset, and step functions.

Function Description
getObservationInfo Returns information about the environment

observations
getActionInfo Returns information about the environment actions
sim Simulate the environment with an agent
validateEnvironment Validate the environment by calling the reset

function and simulating the environment for one time
step using step

2 Create Environments

2-58

Function Description
reset Initialize environment state and clean up any

visualization
step Applies an action, simulates the environment for one

step, and outputs the observations and rewards. Also,
sets a flag indicating whether the episode is complete

Constructor function A function with the same name as the class that
creates an instance of the class

Sample Constructor Function

The sample cart-pole constructor function creates the environment by:

• Defining the action and observation specifications. For more information about
creating these specifications, see rlNumericSpec and rlFiniteSetSpec.

• Calling the constructor of the base abstract class.

function this = MyEnvironment()
 % Initialize Observation settings
 ObservationInfo = rlNumericSpec([4 1]);
 ObservationInfo.Name = 'CartPole States';
 ObservationInfo.Description = 'x, dx, theta, dtheta';

 % Initialize Action settings
 ActionInfo = rlFiniteSetSpec([-1 1]);
 ActionInfo.Name = 'CartPole Action';

 % The following line implements built-in functions of RL env
 this = this@rl.env.MATLABEnvironment(ObservationInfo,ActionInfo);

 % Initialize property values and pre-compute necessary values
 updateActionInfo(this);
end

This sample constructor function does not include any input arguments. However, you can
add input arguments for your custom constructor.

Sample reset Function

The sample cart-pole reset function sets the initial condition of the model and returns the
initial values of the observations. It also generates a notification that the environment has

 Create Custom MATLAB Environment from Template

2-59

been updated by calling the envUpdatedCallback function, which is useful for updating
the environment visualization.

% Reset environment to initial state and output initial observation
function InitialObservation = reset(this)
 % Theta (+- .05 rad)
 T0 = 2 * 0.05 * rand - 0.05;
 % Thetadot
 Td0 = 0;
 % X
 X0 = 0;
 % Xdot
 Xd0 = 0;

 InitialObservation = [T0;Td0;X0;Xd0];
 this.State = InitialObservation;

 % (optional) use notifyEnvUpdated to signal that the
 % environment has been updated (e.g. to update visualization)
 notifyEnvUpdated(this);
end

Sample step Function

The sample cart-pole step function:

• Processes the input action
• Evaluates the environment dynamic equations for one time step
• Computes and returns the updated observations
• Computes and returns the reward signal
• Checks if the episode has ended and returns the IsDone signal as appropriate
• Generates a notification that the environment has been updated

function [Observation,Reward,IsDone,LoggedSignals] = step(this,Action)
 LoggedSignals = [];

 % Get action
 Force = getForce(this,Action);

 % Unpack state vector
 XDot = this.State(2);
 Theta = this.State(3);
 ThetaDot = this.State(4);

 % Cache to avoid recomputation

2 Create Environments

2-60

 CosTheta = cos(Theta);
 SinTheta = sin(Theta);
 SystemMass = this.CartMass + this.PoleMass;
 temp = (Force + this.PoleMass*this.HalfPoleLength*ThetaDot^2*SinTheta)...
 /SystemMass;

 % Apply motion equations
 ThetaDotDot = (this.Gravity*SinTheta - CosTheta*temp)...
 / (this.HalfPoleLength*(4.0/3.0 - this.PoleMass*CosTheta*CosTheta/SystemMass));
 XDotDot = temp - this.PoleMass*this.HalfPoleLength*ThetaDotDot*CosTheta/SystemMass;

 % Euler integration
 Observation = this.State + this.Ts.*[XDot;XDotDot;ThetaDot;ThetaDotDot];

 % Update system states
 this.State = Observation;

 % Check terminal condition
 X = Observation(1);
 Theta = Observation(3);
 IsDone = abs(X) > this.DisplacementThreshold || abs(Theta) > this.AngleThreshold;
 this.IsDone = IsDone;

 % Get reward
 Reward = getReward(this);

 % (optional) use notifyEnvUpdated to signal that the
 % environment has been updated (e.g. to update visualization)
 notifyEnvUpdated(this);
end

Optional Functions
You can define any other functions in your template class as required. For example, you
can create helper functions that are called by either step or reset. The cart-pole
template model implements a getReward function for computing the reward each time
step.

function Reward = getReward(this)
 if ~this.IsDone
 Reward = this.RewardForNotFalling;
 else
 Reward = this.PenaltyForFalling;
 end
end

 Create Custom MATLAB Environment from Template

2-61

Environment Visualization
You can add a visualization to your custom environment by implementing the plot
function. In the plot function:

• Create a figure or an instance of a visualizer class of your own implementation. For
this example, create a figure and save the handle as a property of the environment.

• Call the envUpdatedCallback function.

function plot(this)
 % Initiate the visualization
 this.h = figure;

 % Update the visualization
 envUpdatedCallback(this)
end

In the envUpdatedCallback, plot the visualization to the figure or using your custom
visualizer object. For example, check if the figure handle has been set. If it has, then plot
the visualization.
function envUpdatedCallback(this)
 % Set the visualization figure as the current figure
 figure(this.h)
 clf

 % Extract the cart position and pole angle
 X = this.State(2);
 theta = this.State(3);

 % Plot the cart
 cartpoly = polyshape([-0.25 -0.25 0.25 0.25],[-0.125 0.125 0.125 -0.125]);
 cartpoly = translate(cartpoly,[X 0]);
 plot(cartpoly,'FaceColor',[0.8500 0.3250 0.0980])
 hold on

 % Plot the pole
 L = this.HalfPoleLength*2;
 polepoly = polyshape([-0.1 -0.1 0.1 0.1],[0 L L 0]);
 polepoly = translate(polepoly,[X,0]);
 polepoly = rotate(polepoly,rad2deg(theta),[X,0]);
 plot(polepoly,'FaceColor',[0 0.4470 0.7410])

 hold off
 xlim([-3 3])
 ylim([-1 2])
end

2 Create Environments

2-62

The environment calls the envUpdatedCallback function, and therefore updates the
visualization, whenever the environment is updated.

Create Custom Environment
Once you have defined your custom environment class, create an instance of it in the
MATLAB workspace. At the command line, type:

env = MyEnvironment;

If your constructor has input arguments, specify them after the class name. For example,
MyEnvironment(arg1,arg2).

After creating your environment, it is best practice to validate the environment dynamics.
To do so, use the validateEnvironment function, which prints an error to the
command window if there are any issues with your environment implementation.

validateEnvironment(env)

After validating the environment object, you can use it to train a reinforcement learning
agent. For more information on training agents, see “Train Reinforcement Learning
Agents” on page 5-2.

See Also
rlCreateEnvTemplate | train

More About
• “Create MATLAB Environments for Reinforcement Learning” on page 2-2
• “Create MATLAB Environment using Custom Functions” on page 2-47
• “Define Reward Signals” on page 2-13

 See Also

2-63

Define Policies and Value Functions

• “Create Policy and Value Function Representations” on page 3-2
• “Import Policy and Value Function Representations” on page 3-12

3

Create Policy and Value Function Representations
A reinforcement learning policy is a mapping that selects an action to take based on
observations from the environment. During training, the agent tunes the parameters of its
policy representation to maximize the long-term reward.

Depending on the type of reinforcement learning agent you are using, you define actor
and critic function approximators, which the agent uses to represent and train its policy.
The actor represents the policy that selects the best action to take. The critic represents
the value function that estimates the long-term reward for the current policy. Depending
on your application and selected agent, you can define policy and value functions using
deep neural networks, linear basis functions, or look-up tables.

For more information on agents, see “Reinforcement Learning Agents” on page 4-2.

Function Approximation
Depending on the type of agent you are using, Reinforcement Learning Toolbox software
supports the following types of function approximators:

• V(S|θV) — Critics that estimate the expected long-term reward based on observation S
• Q(S,A|θQ) — Critics that estimate the expected long-term reward based on observation

S and action A
• μ(S|θμ) — Actors that select an action based on observation S

Each function approximator has a corresponding set of parameters (θV, θQ, or θμ), which
are computed during the learning process.

3 Define Policies and Value Functions

3-2

For systems with a limited number of discrete observations and discrete actions, you can
store value functions in a look-up table. For systems that have many discrete observations
and actions or with observation and action spaces that are continuous, storing the
observations and actions becomes impractical. For such systems, you can represent your
actors and critics using deep neural networks or linear basis functions.

Table Representations
You can create two types of table representations:

• Value tables, which store rewards for corresponding observations.
• Q-tables, which store rewards for corresponding observation-action pairs.

To create a table representation, first create a value table or Q table using the rlTable
function. Then, create a representation for the table using the rlRepresentation
function. To configure the learning rate and optimization used by the representation, use
an rlRepresentationOptions object.

 Create Policy and Value Function Representations

3-3

Deep Neural Network Representations
You can create actor and critic function approximators using deep neural network
representations. Doing so uses Deep Learning Toolbox software features.

Network Input and Output Dimensions

The dimensions of your actor and critic networks must match the corresponding action
and observation specifications from the training environment object. To obtain the action
and observation dimensions for environment env, use the getActionInfo and
getObservationInfo functions, respectively. Then access the Dimensions property of
the specification objects.

actInfo = getActionInfo(env);
actDimensions = actionInfo.Dimensions;

obsInfo = getObservationInfo(env);
obsDimensions = observatonInfo.Dimensions;

For critic networks that take only observations as inputs, such as those used in AC or PG
agents, the dimensions of the input layers must match the dimensions of the environment
observation specifications. The dimensions of the critic output layer must be a scalar
value function.

For critic networks that take only observations and actions as inputs, such as those used
in DQN or DDPG agents, the dimensions of the input layers must match the dimensions of
the corresponding environment observation and action specifications. In this case, the
dimensions of the critic output layer must also be a scalar value function.

For actor networks the dimensions of the input layers must match the dimensions of the
environment observation specifications. If the actor has a:

• Discrete action space, then its output size must equal the number of discrete actions.
• Continuous action space, then its output size must be a scalar or vector value, as
defined in the observation specification.

Build Deep Neural Network

Deep neural networks consist of a series of interconnected layers. The following table
lists some common deep learning layers used in reinforcement learning applications. For
a full list of available layers, see “List of Deep Learning Layers” (Deep Learning Toolbox).

3 Define Policies and Value Functions

3-4

Layer Description
imageInputLayer Input vectors and 2-D images, and normalize the

data.
tanhLayer Apply a hyperbolic tangent activation layer to the

layer inputs.
reluLayer Set any input values that are less than zero to zero.
fullyConnectedLayer Multiply the input vector by a weight matrix, and

add a bias vector.
convolution2dLayer Apply sliding convolutional filters to the input.
additionLayer Add the outputs of multiple layers together.
concatenationLayer Concatenate inputs along a specified dimension.

The lstmLayer, bilstmLayer, and batchNormalizationLayer layers are not
supported for reinforcement learning.

You can also create your own custom layers. For more information, see “Define Custom
Deep Learning Layers” (Deep Learning Toolbox). Reinforcement Learning Toolbox
software provides the following custom layers.

Layer Description
scalingLayer Linearly scale and bias an input array. This layer is

useful for scaling and shifting the outputs of
nonlinear layers, such as tanhLayer and sigmoid.

quadraticLayer Create vector of quadratic monomials constructed
from the elements of the input array. This layer is
useful when you need an output that is some
quadratic function of its inputs, such as for an LQR
controller.

The scalingLayer and quadraticLayer custom layers do not contain tunable
parameters; that is, they do not change during training.

For reinforcement learning applications, you construct your deep neural network by
connecting a series of layers for each input path (observations or actions) and for each
output path (estimated rewards or actions). You then connect these paths together using
the connectLayers function.

 Create Policy and Value Function Representations

3-5

You can also create your deep neural network using the Deep Network Designer app.
For an example, see “Create Agent Using Deep Network Designer and Train Using Image
Observations” on page 5-93.

When you create a deep neural network, you must specify names for the first layer of
each input path and the final layer of the output path.

The following code creates and connects the following input and output paths:

• An observation input path, observationPath, with the first layer named
'observation'.

• An action input path, actionPath, with the first layer named 'action'.
• An estimated value function output path, commonPath, which takes the outputs of

observationPath and actionPath as inputs. The final layer of this path is named
'output'.

observationPath = [
 imageInputLayer([4 1 1],'Normalization','none','Name','observation')
 fullyConnectedLayer(24,'Name','CriticObsFC1')
 reluLayer('Name','CriticRelu1')
 fullyConnectedLayer(24,'Name','CriticObsFC2')];
actionPath = [
 imageInputLayer([1 1 1],'Normalization','none','Name','action')
 fullyConnectedLayer(24,'Name','CriticActFC1')];
commonPath = [
 additionLayer(2,'Name','add')
 reluLayer('Name','CriticCommonRelu')
 fullyConnectedLayer(1,'Name','output')];
criticNetwork = layerGraph(observationPath);
criticNetwork = addLayers(criticNetwork,actionPath);
criticNetwork = addLayers(criticNetwork,commonPath);
criticNetwork = connectLayers(criticNetwork,'CriticObsFC2','add/in1');
criticNetwork = connectLayers(criticNetwork,'CriticActFC1','add/in2');

For all observation and action input paths, you must specify an imageInputLayer layer
as the first layer in the path.

You can view the structure of your deep neural network using the plot function.

plot(criticNetwork)

3 Define Policies and Value Functions

3-6

For PG and AC agents, the final output layers of your deep neural network actor
representation are a fullyConnectedLayer and a softmaxLayer layer. When you
specify the layers for your network, you must specify the fullyConnectedLayer and
you can optionally specify the softmaxLayer layer. If you omit the softmaxLayer, the
software automatically adds one for you.

Determining the number, type, and size of layers for your deep neural network
representation can be difficult and is application-dependent. However, the most critical
component for any function approximator is whether the function is able to approximate
the optimal policy or discounted value function for your application; that is, does it have
layers that can correctly learn the features of your observation, action, and reward
signals.

Consider the following tips when constructing your network.

 Create Policy and Value Function Representations

3-7

• For continuous action spaces, bound actions with a tanhLayer followed by
ScalingLayer, if necessary.

• Deep dense networks with reluLayers can be fairly good at approximating many
different functions. Therefore, they are often a good first choice.

• When approximating strong nonlinearities or systems with algebraic constraints, it is
often better to add more layers rather than increasing number of outputs per layer.
Adding more layers promotes exponential exploration, while adding layer outputs
promotes polynomial exploration.

• For on-policy agents, such as AC and PG agents, parallel training works better if your
networks are large (for example, a network with two hidden layers with 32 nodes
each, which has a few hundred parameters). On-policy parallel updates assume each
worker updates a different part of the network, such as when they explore different
areas of the observation space. If the network is small, the worker updates might
correlate with each other and make training unstable.

Create and Configure Representation

To create an actor or critic representation object for your deep neural network, use the
rlRepresentation function. To configure the learning rate and optimization used by
the representation, use an rlRepresentationOptions object.

For example, create a representation object for the critic network criticNetwork,
specifying a learning rate of 0.0001. When you create the representation, pass the
environment action and observation specifications to the rlRepresentation function,
and specify the names of the network layers to which the actions and observations are
connected.
opt = rlRepresentationOptions('LearnRate',0.0001);
critic = rlRepresentation(criticNetwork,'Observation',{'observation'},obsInfo...
 'Action',{'action'},actInfo,opt);

When creating your deep neural network and configuring your representation object,
consider using one of the following approaches as a starting point:

1 Start with smallest possible network and a high learning rate (0.01). Train this initial
network to see if the agent converges quickly to a poor policy or acts in a random
manner. If either of these issues occur, rescale the network by adding more layers or
more outputs on each layer. Your goal is to find a network structure that is just big
enough, does not learn too fast, and shows signs of learning (an improving trajectory
of the reward graph) after an initial training period.

2 Initially configure the agent to learn slowly by setting a low learning rate. By learning
slowly, you can check to see if the agent is on the right track, which can help verify

3 Define Policies and Value Functions

3-8

whether your network architecture is satisfactory for the problem. For difficult
problems, tuning parameters is much easier once you settle on a good network
architecture.

Also, consider the following tips when configuring your deep neural network
representation:

• Be patient with DDPG and DQN agents, since they may not learn anything for some
time during the early episodes, and they typically show a dip in cumulative reward
early in the training process. Eventually, they can show signs of learning after the first
few thousand episodes.

• For DDPG and DQN agents, promoting exploration of the agent is critical.
• For agents with both actor and critic networks, set the initial learning rates of both

representations to the same value. For some problems, setting the critic learning rate
to a higher value than that of the actor can improve learning results.

Linear Basis Function Representations
Linear basis function representations have the form f = W'B, where W is a weight array,
and B is the column vector output of a custom basis function. The learnable parameters of
a linear basis function representation are the elements of W.

For critic representations, f is a scalar value and W is a column vector with the same
length as B.

For actor representations, with a:

• Continuous action space, the dimensions of f match the dimensions of the agent
action specification, which is either a scalar or a column vector.

• Discrete action space, f is a column vector with length equal to the number of discrete
actions.

For actor representations, the number of columns in W equals the number of elements in
f.

To create a linear basis function representation, first create a custom basis function that
returns a column vector. The signature of this basis function depends on what type of
function approximator you are creating. When you create:

• A critic representation with observation inputs only or an actor representation, your
basis function must have the following signature.

 Create Policy and Value Function Representations

3-9

B = myBasisFunction(obs1,obs2,...,obsN)
• A critic representation with observation and action inputs, your basis function must

have the following signature.

B = myBasisFunction(obs1,obs2,...,obsN,act)

Here obs1 to obsN are observations in the same order and with the same data type and
dimensions as the observation specifications of the agent, and act has the same data type
and dimensions as the agent action specification.

Each element of B can be any function of the observation and action signals, depending
on the requirements of your application.

For more information on creating such a representation, see rlRepresentation.

For an example that trains a custom agent that uses a linear basis function
representation, see “Train Custom LQR Agent” on page 5-185.

Specify Agent Representations
Once you create your actor and critic representations, you can create a reinforcement
learning agent that uses these representations. For example, create a PG agent using a
given actor and critic network.

agentOpts = rlPGAgentOptions('UseBaseline',true);
agent = rlPGAgent(actor,baseline,agentOpts);

For more information on the different types of reinforcement learning agents, see
“Reinforcement Learning Agents” on page 4-2.

You can obtain the actor and critic representations from an existing agent using
getActor and getCritic, respectively.

You can also set the actor and critic of an existing agent using setActor and
setCritic, respectively. When you specify a representation using these functions, the
input and output layers of the specified representation must match the observation and
action specifications of the original agent.

See Also
rlRepresentation | rlRepresentationOptions

3 Define Policies and Value Functions

3-10

More About
• “Reinforcement Learning Agents” on page 4-2
• “Import Policy and Value Function Representations” on page 3-12

 See Also

3-11

Import Policy and Value Function Representations
To create function approximators for reinforcement learning, you can import pretrained
deep neural networks or deep neural network layer architectures using the Deep
Learning Toolbox network import functionality. You can import:

• Open Neural Network Exchange (ONNX) models, which require the Deep Learning
Toolbox Converter for ONNX Model Format support package software. For more
information, importONNXLayers.

• TensorFlow-Keras networks, which requires Deep Learning Toolbox Importer for
TensorFlow-Keras support package software. For more information, see
importKerasLayers.

• Caffe convolutional networks, which requires Deep Learning Toolbox Importer for
Caffe Models support package software. For more information, see
importCaffeLayers.

After importing a deep neural network, you can create a policy or value function
representation object using rlRepresentation.

When importing deep neural network architectures, consider the following:

• Imported architectures must have a single input layer and a single output layer.
Therefore, importing entire critic networks with observation and action input layers is
not supported.

• The dimensions of the imported network architecture input and output layers must
match the dimensions of the corresponding action, observation, or reward dimensions
for your environment.

• After importing the network architecture, you must set the names of the input and
output layers to match the names of the corresponding action and observation
specifications.

For more information on the deep neural network architectures supported for
reinforcement learning, see “Create Policy and Value Function Representations” on page
3-2.

Import Actor and Critic for Image Observation Application
For example, assume that you have an environment with a 50-by-50 grayscale image
observation signal and a continuous action space. To train a policy gradient agent you

3 Define Policies and Value Functions

3-12

require the following function approximators, both of which must have a single 50-by-50
image input observation layer and a single scalar output value.

• Actor — Selects an action value based on the current observation
• Critic — Estimates the expected long-term reward based on the current observation

Also, assume that you have the following network architectures to import:

• A deep neural network architecture for the actor with a 50-by-50 image input layer
and a scalar output layer, which is saved in the ONNX format
(criticNetwork.onnx).

• A deep neural network architecture for the critic with a 50-by-50 image input layer
and a scalar output layer, which is saved in the ONNX format (actorNetwork.onnx).

To import the critic and actor networks, use the importONNXLayers function without
specifying an output layer.
criticNetwork = importONNXLayers('criticNetwork.onnx');
actorNetwork = importONNXLayers('actorNetwork.onnx');

These commands generate a warning, which states that the network will not be trainable
until an output layer is added. When you use an imported network to create an actor or
critic representation, the Reinforcement Learning Toolbox software automatically adds an
output layer for you.

After importing the networks, create the actor and critic function approximator
representations using the rlRepresentation function. To do so, first obtain the
observation and action specifications from the environment.
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

Create the critic representation, specifying the name of the input layer of the critic
network as the observation name.
critic = rlRepresentation(criticNetwork,obsInfo,...
 'Observation',{criticNetwork.Layers(1).Name});

Create the actor representation, specifying the name of the input layer of the actor
network as the observation name and the output layer of the actor network as the
observation name.
actor = rlRepresentation(actorNetwork,obsInfo,actInfo,...
 'Observation',{actorNetwork.Layers(1).Name},...
 'Action',{actorNetwork.Layers(end).Name});

 Import Policy and Value Function Representations

3-13

You can then:

• Create an agent using these representations. For more information, see
“Reinforcement Learning Agents” on page 4-2.

• Set the actor and critic representation in an existing agent using setActor and
setCritic, respectively.

See Also
rlRepresentation

More About
• “Create Policy and Value Function Representations” on page 3-2
• “Reinforcement Learning Agents” on page 4-2

3 Define Policies and Value Functions

3-14

Create Agents

• “Reinforcement Learning Agents” on page 4-2
• “Q-Learning Agents” on page 4-5
• “SARSA Agents” on page 4-8
• “Deep Q-Network Agents” on page 4-11
• “Deep Deterministic Policy Gradient Agents” on page 4-15
• “Policy Gradient Agents” on page 4-19
• “Actor-Critic Agents” on page 4-23
• “Proximal Policy Optimization Agents” on page 4-27
• “Custom Agents” on page 4-32

4

Reinforcement Learning Agents
The goal of reinforcement learning is to train an agent to complete a task within an
uncertain environment. The agent receives observations and a reward from the
environment and sends actions to the environment. The reward is a measure of how
successful an action is with respect to completing the task goal.

The agent contains two components: a policy and a learning algorithm.

• The policy is a mapping that selects actions based on the observations from the
environment. Typically, the policy is a function approximator with tunable parameters,
such as a deep neural network.

• The learning algorithm continuously updates the policy parameters based on the
actions, observations, and rewards. The goal of the learning algorithm is to find an
optimal policy that maximizes the cumulative reward received during the task.

4 Create Agents

4-2

Depending on the learning algorithm, an agent maintains one or more parameterized
function approximators for training the policy. There are two types of function
approximators.

• Critics — For a given observation and action, a critic finds the expected value of the
long-term future reward for the task.

• Actors — For a given observation, an actor finds the action that maximizes the long-
term future reward

For more information on creating actor and critic function approximators, see “Create
Policy and Value Function Representations” on page 3-2.

 Reinforcement Learning Agents

4-3

Built-In Agents
Reinforcement Learning Toolbox software provides the following built-in agents. Each
agent can be trained in environments with continuous or discrete observation spaces and
the following action spaces.

Agent Actions
“Q-Learning Agents” on page 4-5 Discrete
“SARSA Agents” on page 4-8 Discrete
“Deep Q-Network Agents” on page 4-11 Discrete
“Deep Deterministic Policy Gradient
Agents” on page 4-15

Continuous

“Policy Gradient Agents” on page 4-19 Discrete
“Actor-Critic Agents” on page 4-23 Discrete

Custom Agents
You can also train policies using other learning algorithms by creating a custom agent. To
do so, you create a subclass of a custom agent class, defining the agent behavior using a
set of required and optional methods. For more information, see “Custom Agents” on
page 4-32.

See Also
rlACAgent | rlDDPGAgent | rlDQNAgent | rlPGAgent | rlQAgent | rlSARSAAgent

More About
• “What Is Reinforcement Learning?” on page 1-3
• “Train Reinforcement Learning Agents” on page 5-2

4 Create Agents

4-4

Q-Learning Agents
The Q-learning algorithm is a model-free, online, off-policy reinforcement learning
method. A Q-learning agent is a value-based reinforcement learning agent which trains a
critic to estimate the return or future rewards.

For more information on the different types of reinforcement learning agents, see
“Reinforcement Learning Agents” on page 4-2.

Q-learning agents can be trained in environments with the following observation and
action spaces.

Observation Space Action Space
Continuous or discrete Discrete

During training, the agent explores the action space using epsilon-greedy exploration.
During each control interval the agent selects a random action with probability ϵ,
otherwise it selects an action greedily with respect to the value function with probability
1-ϵ. This greedy action is the action for which the value function is greatest.

Critic Function
To estimate the value function, a Q-learning agent maintains a critic Q(S,A), which is a
table or function approximator. The critic takes observation S and action A as inputs and
outputs the corresponding expectation of the long-term reward.

For more information on creating critics for value function approximation, see “Create
Policy and Value Function Representations” on page 3-2.

When training is complete, the trained value function approximator is stored in critic
Q(S,A).

Agent Creation
To create a Q-learning agent first create a critic representation object. Then, using this
representation, create the agent using the rlQAgent function.

 Q-Learning Agents

4-5

Training Algorithm
Q-learning agents use the following training algorithm. To configure the training
algorithm, specify options using rlQAgentOptions.

• Initialize the critic Q(S,A) with random values.
• For each training episode:

1 Set the initial observation S.
2 Repeat the following for each step of the episode until S is a terminal state:

a For the current observation S, select a random action A with probability ϵ.
Otherwise, select the action for which the critic value function is greatest.

A = max
A

Q S, A

To specify ϵ and its decay rate, use the EpsilonGreedyExploration option.
b Execute action A. Observe the reward R and next observation S'.
c If S' is a terminal state, set the value function target y to R. Otherwise set it

to:

y = R + γmax
A

Q S′, A

To set the discount factor γ, use the DiscountFactor option.
d Compute the critic parameter update.

ΔQ = y − Q S, A
e Update the critic using the learning rate α.

Q S, A = Q S, A + α ∗ ΔQ

Specify the learning rate when you create the critic representation by setting
the LearnRate option in the rlRepresentationOptions object.

f Set the observation S to S'.

See Also
rlQAgentOptions | rlRepresentation

4 Create Agents

4-6

More About
• “Reinforcement Learning Agents” on page 4-2
• “Create Policy and Value Function Representations” on page 3-2
• “Train Reinforcement Learning Agents” on page 5-2
• “Train Reinforcement Learning Agent in Basic Grid World” on page 1-11

 See Also

4-7

SARSA Agents
The SARSA algorithm is a model-free, online, on-policy reinforcement learning method. A
SARSA agent is a value-based reinforcement learning agent which trains a critic to
estimate the return or future rewards.

For more information on the different types of reinforcement learning agents, see
“Reinforcement Learning Agents” on page 4-2.

SARSA agents can be trained in environments with the following observation and action
spaces.

Observation Space Action Space
Continuous or discrete Discrete

During training, the agent explores the action space using epsilon-greedy exploration.
During each control interval the agent selects a random action with probability ϵ,
otherwise it selects an action greedily with respect to the value function with probability
1-ϵ. This greedy action is the action for which the value function is greatest.

Critic Function
To estimate the value function, a SARSA agent maintains a critic Q(S,A), which is a table
or function approximator. The critic takes observation S and action A as inputs and
outputs the corresponding expectation of the long-term reward.

For more information on creating critics for value function approximation, see “Create
Policy and Value Function Representations” on page 3-2.

When training is complete, the trained value function approximator is stored in critic
Q(S,A).

Agent Creation
To create a SARSA agent first create a critic representation object. Then, using this
representation, create the agent using the rlSARSAAgent function.

4 Create Agents

4-8

Training Algorithm
SARSA agents use the following training algorithm. To configure the training algorithm,
specify options using rlSARSAAgentOptions.

• Initialize the critic Q(S,A) with random values.
• For each training episode:

1 Set the initial observation S.
2 For the current observation S, select a random action A with probability ϵ.

Otherwise, select the action for which the critic value function is greatest.

A = max
A

Q S, A

To specify ϵ and its decay rate, use the EpsilonGreedyExploration option.
3 Repeat the following for each step of the episode until S is a terminal state:

a Execute action A. Observe the reward R and next observation S'.
b Select an action A' by following the policy from state S'.

A′ = max
A′

Q S′, A′

c If S' is a terminal state, set the value function target y to R. Otherwise set it
to:

y = R + γQ S′, A′

To set the discount factor γ, use the DiscountFactor option.
d Compute the critic parameter update.

ΔQ = y − Q S, A
e Update the critic using the learning rate α.

Q S, A = Q S, A + α ∗ ΔQ

Specify the learning rate when you create the critic representation by setting
the LearnRate option in the rlRepresentationOptions object.

f Set the observation S to S'.
g Set the action A to A'.

 SARSA Agents

4-9

See Also
rlRepresentation | rlSARSAAgentOptions

More About
• “Reinforcement Learning Agents” on page 4-2
• “Create Policy and Value Function Representations” on page 3-2
• “Train Reinforcement Learning Agents” on page 5-2
• “Train Reinforcement Learning Agent in Basic Grid World” on page 1-11

4 Create Agents

4-10

Deep Q-Network Agents
The deep Q-network (DQN) algorithm is a model-free, online, off-policy reinforcement
learning method. A DQN agent is a value-based reinforcement learning agent that trains a
critic to estimate the return or future rewards. DQN is a variant of Q-learning. For more
information on Q-learning, see “Q-Learning Agents” on page 4-5.

For more information on the different types of reinforcement learning agents, see
“Reinforcement Learning Agents” on page 4-2.

DQN agents can be trained in environments with the following observation and action
spaces.

Observation Space Action Space
Continuous or discrete Discrete

During training, the agent:

• Updates the critic properties at each time step during learning.
• Explores the action space using epsilon-greedy exploration. During each control

interval the agent selects a random action with probability ϵ, otherwise it selects an
action greedily with respect to the value function with probability 1-ϵ. This greedy
action is the action for which the value function is greatest.

• Stores past experience using a circular experience buffer. The agent updates the critic
based on a mini-batch of experiences randomly sampled from the buffer.

Critic Function
To estimate the value function, a DQN agent maintains two function approximators:

• Critic Q(S,A) — The critic takes observation S and action A as inputs and outputs the
corresponding expectation of the long-term reward.

• Target critic Q'(S,A) — To improve the stability of the optimization, the agent
periodically updates the target critic based on the latest critic parameter values.

Both Q(S,A) and Q'(S,A) have the same structure and parameterization.

For more information on creating critics for value function approximation, see “Create
Policy and Value Function Representations” on page 3-2.

 Deep Q-Network Agents

4-11

When training is complete, the trained value function approximator is stored in critic
Q(S,A).

Agent Creation
To create a DQN agent:

1 Create a critic representation object.
2 Specify agent options using the rlDQNAgentOptions function.
3 Create the agent using the rlDQNAgent function.

For more information, see rlDQNAgent and rlDQNAgentOptions.

Training Algorithm
DQN agents use the following training algorithm, in which they update their critic model
at each time step. To configure the training algorithm, specify options using
rlDQNAgentOptions.

• Initialize the critic Q(s,a) with random parameter values θQ, and initialize the target
critic with the same values: θQ′ = θQ.

• For each training time step:

1 For the current observation S, select a random action A with probability ϵ.
Otherwise, select the action for which the critic value function is greatest.

A = argmax
A

Q S, A θQ

To specify ϵ and its decay rate, use the EpsilonGreedyExploration option.
2 Execute action A. Observe the reward R and next observation S'.
3 Store the experience (S,A,R,S') in the experience buffer.
4 Sample a random mini-batch of M experiences (Si,Ai,Ri,S'i) from the experience

buffer. To specify M, use the MiniBatchSize option.
5 If S'i is a terminal state, set the value function target yi to Ri. Otherwise set it to:

4 Create Agents

4-12

Amax = argmax
A′

Q Si′, A′ θQ

yi = Ri + γQ′ Si′, Amax θQ′
double DQN

yi = Ri + γmax
A′

Q′ Si′, A′ θQ′ DQN

To set the discount factor γ, use the DiscountFactor option. To use double DQN,
set the UseDoubleDQN option to true.

6 Update the critic parameters by one-step minimization of the loss L across all
sampled experiences.

L = 1
M ∑

i = 1

M
yi− Q Si, Ai θQ

2

7 Update the target critic depending on the target update method (smoothing or
periodic). To select the update method, use the TargetUpdateMethod option.

θQ′ = τθQ + 1− τ θQ′ smoothing
θQ′ = θQ periodic

By default the agent uses target smoothing and updates the target critic at every
time step using smoothing factor τ. To specify the smoothing factor, use the
TargetSmoothFactor option. Alternatively, you can update the target critic
periodically. To specify the number of episodes between target critic updates, use
the TargetUpdateFrequency option.

8 Update the probability threshold ϵ for selecting a random action based on the
decay rate specified in the EpsilonGreedyExploration option.

References
[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M.

Riedmiller, “Playing Atari With Deep Reinforcement Learning,” NIPS Deep
Learning Workshop, 2013.

See Also
rlDQNAgent | rlDQNAgentOptions | rlRepresentation

 See Also

4-13

More About
• “Reinforcement Learning Agents” on page 4-2
• “Create Policy and Value Function Representations” on page 3-2
• “Train Reinforcement Learning Agents” on page 5-2

4 Create Agents

4-14

Deep Deterministic Policy Gradient Agents
The deep deterministic policy gradient (DDPG) algorithm is a model-free, online, off-policy
reinforcement learning method. A DDPG agent is an actor-critic reinforcement learning
agent that computes an optimal policy that maximizes the long-term reward.

For more information on the different types of reinforcement learning agents, see
“Reinforcement Learning Agents” on page 4-2.

DDPG agents can be trained in environments with the following observation and action
spaces.

Observation Space Action Space
Continuous or discrete Continuous

During training, a DDPG agent:

• Updates the actor and critic properties at each time step during learning.
• Stores past experience using a circular experience buffer. The agent updates the actor

and critic using a mini-batch of experiences randomly sampled from the buffer.
• Perturbs the action chosen by the policy using a stochastic noise model at each

training step.

Actor and Critic Function
To estimate the policy and value function, a DDPG agent maintains four function
approximators:

• Actor μ(S) — The actor takes observation S and outputs the corresponding action that
maximizes the long-term reward.

• Target actor μ'(S) — To improve the stability of the optimization, the agent periodically
updates the target actor based on the latest actor parameter values.

• Critic Q(S,A) — The critic takes observation S and action A as inputs and outputs the
corresponding expectation of the long-term reward.

• Target critic Q'(S,A) — To improve the stability of the optimization, the agent
periodically updates the target critic based on the latest critic parameter values.

Both Q(S,A) and Q'(S,A) have the same structure and parameterization, and both μ(S) and
μ'(S) have the same structure and parameterization.

 Deep Deterministic Policy Gradient Agents

4-15

When training is complete, the trained optimal policy is stored in actor μ(S).

For more information on creating actors and critics for function approximation, see
“Create Policy and Value Function Representations” on page 3-2.

Agent Creation
To create a DDPG agent:

1 Create an actor representation object.
2 Create a critic representation object.
3 Specify agent options using the rlDDPGAgentOptions function.
4 Create the agent using the rlDDPGAgent function.

For more information, see rlDDPGAgent and rlDDPGAgentOptions.

Training Algorithm
DDPG agents use the following training algorithm, in which they update their actor and
critic models at each time step. To configure the training algorithm, specify options using
rlDDPGAgentOptions.

• Initialize the critic Q(S,A) with random parameter values θQ, and initialize the target
critic with the same random parameter values: θQ′ = θQ.

• Initialize the actor μ(S) with random parameter values θμ, and initialize the target
actor with the same parameter values: θμ′ = θμ.

• For each training time step:

1 For the current observation S, select action A = μ(S) + N, where N is stochastic
noise from the noise model. To configure the noise model, use the NoiseOptions
option.

2 Execute action A. Observe the reward R and next observation S'.
3 Store the experience (S,A,R,S') in the experience buffer.
4 Sample a random mini-batch of M experiences (Si,Ai,Ri,S'i) from the experience

buffer. To specify M, use the MiniBatchSize option.
5 If S'i is a terminal state, set the value function target yi to Ri. Otherwise set it to:

yi = Ri + γQ′ Si′, μ′ Si′ θμ θQ′

4 Create Agents

4-16

The value function target is the sum of the experience reward Ri and the
discounted future reward. To specify the discount factor γ, use the
DiscountFactor option.

To compute the cumulative reward, the agent first computes a next action by
passing the next observation Si' from the sampled experience to the target actor.
The agent finds the cumulative reward by passing the next action to the target
critic.

6 Update the critic parameters by minimizing the loss L across all sampled
experiences.

L = 1
M ∑

i = 1

M
yi− Q Si, Ai θQ

2

7 Update the actor parameters using the following sampled policy gradient to
maximize the expected discounted reward.

∇θμ J ≈ 1
M ∑

i = 1

M
GaiGμi

Gai = ∇AQ Si, A θQ where A = μ Si θμ

Gμi = ∇θμμ Si θμ

Here, Gai is the gradient of the critic output with respect to the action computed
by the actor network, and Gμi is the gradient of the actor output with respect to
the actor parameters. Both gradients are evaluated for observation Si.

8 Update the target actor and critic depending on the target update method
(smoothing or periodic). To select the update method, use the
TargetUpdateMethod option.

θQ′ = τθQ + 1− τ θQ′

θμ′ = τθμ + 1− τ θμ′
smoothing

θQ′ = θQ

θμ′ = θμ
periodic

By default, the agent uses target smoothing and updates the target actor and
critic at every time step using smoothing factor τ. To specify the smoothing factor,
use the TargetSmoothFactor option. Alternatively, you can update the target

 Deep Deterministic Policy Gradient Agents

4-17

actor and critic periodically. To specify the number of episodes between target
updates, use the TargetUpdateFrequency option.

For simplicity, this actor and critic updates in this algorithm show a gradient update using
basic stochastic gradient descent. The actual gradient update method depends on the
optimizer specified using rlRepresentationOptions.

References
[1] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D.

Wierstra. “Continuous control with deep reinforcement learning,” International
Conference on Learning Representations, 2016.

See Also
rlDDPGAgent | rlDDPGAgentOptions | rlRepresentation

More About
• “Reinforcement Learning Agents” on page 4-2
• “Create Policy and Value Function Representations” on page 3-2
• “Train Reinforcement Learning Agents” on page 5-2

4 Create Agents

4-18

Policy Gradient Agents
The policy gradient (PG) algorithm is a model-free, online, on-policy reinforcement
learning method. A PG agent is a policy-based reinforcement learning agent which
directly computes an optimal policy that maximizes the long-term reward.

For more information on the different types of reinforcement learning agents, see
“Reinforcement Learning Agents” on page 4-2.

PG agents can be trained in environments with the following observation and action
spaces.

Observation Space Action Space
Continuous or discrete Discrete

During training, a PG agent:

• Estimates probabilities of taking each action in the action space and randomly selects
actions based on the probability distribution.

• Completes a full training episode using the current policy before learning from the
experience and updating the policy parameters.

Actor and Critic Functions
PG agents represent the policy using an actor function approximator μ(S). The actor takes
observation S and outputs the probabilities of taking each action in the action space when
in state S.

To reduce the variance during gradient estimation, PG agents can use a baseline value
function, which is estimated using a critic function approximator, V(S). The critic
computes the value function for a given observation state.

For more information on creating actors and critics for function approximation, see
“Create Policy and Value Function Representations” on page 3-2.

Agent Creation
To create a PG agent:

 Policy Gradient Agents

4-19

1 Create an actor representation object.
2 If you are using a baseline function, create a critic representation object.
3 Specify agent options using the rlPGAgentOptions function.
4 Create the agent using the rlPGAgent function.

For more information, see rlPGAgent and rlPGAgentOptions.

Training Algorithm
PG agents use the REINFORCE (Monte-Carlo policy gradient) algorithm either with or
without a baseline. To configure the training algorithm, specify options using
rlPGAgentOptions.

REINFORCE Algorithm

1 Initialize the actor μ(S) with random parameter values θμ.
2 For each training episode, generate the episode experience by following actor policy

μ(S). To select an action, the actor generates probabilities for each action in the
action space, then the agent randomly selects an action based on the probability
distribution. The agent takes actions until it reaches the terminal state, ST. The
episode experience consists of the sequence:

S0, A0, R1, S1, …, ST − 1, AT − 1, RT, ST

Here, St is a state observation, At+1 is an action taken from that state, St+1 is the next
state, and Rt+1 is the reward received for moving from St to St+1.

3 For each state in the episode sequence; that is, for t = 1, 2, …, T-1, calculate the
return Gt, which is the discounted future reward.

Gt = ∑
k = t

T
γk− tRk

4 Accumulate the gradients for the actor network by following the policy gradient to
maximize the expected discounted reward. If the EntropyLossWeight option is
greater than zero, then additional gradients are accumulated to minimize the entropy
loss function.

dθμ = ∑
t = 1

T − 1
Gt∇θμlnμ St θμ

4 Create Agents

4-20

5 Update the actor parameters by applying the gradients.

θμ = θμ + αdθμ

Here, α is the learning rate of the actor. Specify the learning rate when you create
the actor representation by setting the LearnRate option in the
rlRepresentationOptions object. For simplicity, this step shows a gradient
update using basic stochastic gradient descent. The actual gradient update method
depends on the optimizer specified using rlRepresentationOptions.

6 Repeat steps 2 through 5 for each training episode until training is complete.

REINFORCE with Baseline Algorithm
1 Initialize the actor μ(S) with random parameter values θμ.
2 Initialize the critic V(S) with random parameter values θQ.
3 For each training episode, generate the episode experience by following actor policy

μ(S). The episode experience consists of the sequence:

S0, A0, R1, S1, …, ST − 1, AT − 1, RT, ST
4 For t = 1, 2, …, T:

• Calculate the return Gt, which is the discounted future reward.

Gt = ∑
k = t

T
γk− tRk

• Compute the advantage function δt using the baseline value function estimate
from the critic.

δt = Gt− V St θV
5 Accumulate the gradients for the critic network.

dθV = ∑
t = 1

T − 1
δt∇θVV St θV

6 Accumulate the gradients for the actor network. If the EntropyLossWeight option
is greater than zero, then additional gradients are accumulated to minimize the
entropy loss function.

dθμ = ∑
t = 1

T − 1
δt∇θμlnμ St θμ

 Policy Gradient Agents

4-21

7 Update the critic parameters θV.

θV = θV + βdθV

Here, β is the learning rate of the critic. Specify the learning rate when you create
the critic representation by setting the LearnRate option in the
rlRepresentationOptions object.

8 Update the actor parameters θμ.

θμ = θμ + αdθμ

9 Repeat steps 3 through 8 for each training episode until training is complete.

For simplicity, this actor and critic updates in this algorithm show a gradient update using
basic stochastic gradient descent. The actual gradient update method depends on the
optimizer specified using rlRepresentationOptions.

References
[1] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist

reinforcement learning," Machine Learning, vol. 8, issue 3-4, pp. 229-256, 1992.

See Also
rlPGAgent | rlPGAgentOptions | rlRepresentation

More About
• “Reinforcement Learning Agents” on page 4-2
• “Create Policy and Value Function Representations” on page 3-2
• “Train Reinforcement Learning Agents” on page 5-2

4 Create Agents

4-22

Actor-Critic Agents
You can use the actor-critic (AC) agent, which uses a model-free, online, on-policy
reinforcement learning method, to implement actor-critic algorithms, such as A2C and
A3C. The goal of this agent is to optimize the policy (actor) directly and train a critic to
estimate the return or future rewards. [1]

For more information on the different types of reinforcement learning agents, see
“Reinforcement Learning Agents” on page 4-2.

AC agents can be trained in environments with the following observation and action
spaces.

Observation Space Action Space
Continuous or discrete Discrete

During training, an AC agent:

• Estimates probabilities of taking each action in the action space and randomly selects
actions based on the probability distribution.

• Interacts with the environment for multiple steps using the current policy before
updating the actor and critic properties.

Actor and Critic Function
To estimate the policy and value function, an AC agent maintains two function
approximators:

• Actor μ(S) — The actor takes observation S and outputs the probabilities of taking
each action in the action space when in state S.

• Critic V(S) — The critic takes observation S and outputs the corresponding
expectation of the discounted long-term reward.

When training is complete, the trained optimal policy is stored in actor μ(S).

For more information on creating actors and critics for function approximation, see
“Create Policy and Value Function Representations” on page 3-2.

 Actor-Critic Agents

4-23

Agent Creation
To create an AC agent:

1 Create an actor representation object.
2 Create a critic representation object.
3 Specify agent options using the rlACAgentOptions function.
4 Create the agent using the rlACAgent function.

Training Algorithm
AC agents use the following training algorithm. To configure the training algorithm,
specify options using an rlACAgentOptions object.

1 Initialize the actor μ(S) with random parameter values θμ.
2 Initialize the critic V(S) with random parameter values θV.
3 Generate N experiences by following the current policy. The episode experience

sequence is:

Sts, Ats, Rts + 1, Sts + 1, …, Sts + N − 1, Ats + N − 1, Rts + N, Sts + N

Here, St is a state observation, At is an action taken from that state, St+1 is the next
state, and Rt+1 is the reward received for moving from St to St+1.

When in state St, the agent computes the probability of taking each action in the
action space using μ(St) and randomly selects action At based on the probability
distribution.

ts is the starting time step of the current set of N experiences. At the beginning of the
training episode, ts = 1. For each subsequent set of N experiences in the same
training episode, ts = ts + N.

For each training episode that does not contain a terminal state, N is equal to the
NumStepsToLookAhead option value. Otherwise, N is less than
NumStepsToLookAhead and SN is the terminal state.

4 For each episode step t = ts+1, ts+2, …, ts+N, compute the return Gt, which is the
sum of the reward for that step and the discounted future reward. If Sts+N is not a
terminal state, the discounted future reward includes the discounted state value
function, computed using the critic network V.

4 Create Agents

4-24

Gt = ∑
k = t

ts + N
γk− tRk + bγN − t + 1V Sts + N θV

Here, b is 0 if Sts+N is a terminal state and 1 otherwise.

To specify the discount factor γ, use the DiscountFactor option.
5 Compute the advantage function Dt.

Dt = Gt − V St θV

6 Accumulate the gradients for the actor network by following the policy gradient to
maximize the expected discounted reward.

dθμ = ∑
t = 1

N
∇θμlnμ St θμ ∗ Dt

7 Accumulate the gradients for the critic network by minimizing the mean square error
loss between the estimated value function V (t) and the computed target return Gt
across all N experiences. If the EntropyLossWeight option is greater than zero,
then additional gradients are accumulated to minimize the entropy loss function.

dθV = ∑
t = 1

N
∇θV Gt − V St θV

2

8 Update the actor parameters by applying the gradients.

θμ = θμ + αdθμ

Here, α is the learning rate of the actor. Specify the learning rate when you create
the actor representation by setting the LearnRate option in the
rlRepresentationOptions object.

9 Update the critic parameters by applying the gradients.

θV = θV + βdθV

Here, β is the learning rate of the critic. Specify the learning rate when you create
the critic representation by setting the LearnRate option in the
rlRepresentationOptions object.

10 Repeat steps 3 through 9 for each training episode until training is complete.

 Actor-Critic Agents

4-25

For simplicity, the actor and critic updates in this algorithm show a gradient update using
basic stochastic gradient descent. The actual gradient update method depends on the
optimizer specified using rlRepresentationOptions.

References
[1] Mnih, V, et al. "Asynchronous methods for deep reinforcement learning," International

Conference on Machine Learning, 2016.

See Also
rlACAgent | rlACAgentOptions | rlRepresentation

More About
• “Reinforcement Learning Agents” on page 4-2
• “Create Policy and Value Function Representations” on page 3-2
• “Train Reinforcement Learning Agents” on page 5-2

4 Create Agents

4-26

Proximal Policy Optimization Agents
The proximal policy optimization (PPO) is a model-free, online, on-policy, policy gradient
reinforcement learning method. This algorithm is a type of policy gradient training that
alternates between sampling data through environmental interaction and optimizing a
clipped surrogate objective function using stochastic gradient descent. The clipped
surrogate objective function improves training stability by limiting the size of the policy
change at each step. [1]

For more information on the different types of reinforcement learning agents, see
“Reinforcement Learning Agents” on page 4-2.

PPO agents can be trained in environments with the following observation and action
spaces.

Observation Space Action Space
Continuous or discrete Discrete

During training, a PPO agent:

• Estimates probabilities of taking each action in the action space and randomly selects
actions based on the probability distribution.

• Interacts with the environment for multiple steps using the current policy before using
mini-batches to update the actor and critic properties over multiple epochs.

Actor and Critic Function
To estimate the policy and value function, a PPO agent maintains two function
approximators:

• Actor μ(S) — The actor takes observation S and outputs the probabilities of taking
each action in the action space when in state S.

• Critic V(S) — The critic takes observation S and outputs the corresponding
expectation of the discounted long-term reward.

When training is complete, the trained optimal policy is stored in actor μ(S).

For more information on creating actors and critics for function approximation, see
“Create Policy and Value Function Representations” on page 3-2.

 Proximal Policy Optimization Agents

4-27

Agent Creation
To create a PPO agent:

1 Create an actor representation object.
2 Create a critic representation object.
3 Specify agent options using an rlPPOAgentOptions object.
4 Create the agent using the rlPPOAgent function.

Training Algorithm
PPO agents use the following training algorithm. To configure the training algorithm,
specify options using an rlPPOAgentOptions.

1 Initialize the actor μ(S) with random parameter values θμ.
2 Initialize the critic V(S) with random parameter values θV.
3 Generate N experiences by following the current policy. The experience sequence is:

Sts, Ats, Rts + 1, Sts + 1, …, Sts + N − 1, Ats + N − 1, Rts + N, Sts + N

Here, St is a state observation, At is an action taken from that state, St+1 is the next
state, and Rt+1 is the reward received for moving from St to St+1.

When in state St, the agent computes the probability of taking each action in the
action space using μ(St) and randomly selects action At based on the probability
distribution.

ts is the starting time step of the current set of N experiences. At the beginning of the
training episode, ts = 1. For each subsequent set of N experiences in the same
training episode, ts ← ts + N.

For each experience sequence that does not contain a terminal state, N is equal to
the ExperienceHorizon option value. Otherwise, N is less than
ExperienceHorizon and SN is the terminal state.

4 For each episode step t = ts+1, ts+2, …, ts+N, compute the return and advantage
function using the method specified by the AdvantageEstimateMethod option.

• Finite Horizon (AdvantageEstimateMethod = "finite-horizon") —
Compute the return Gt, which is the sum of the reward for that step and the
discounted future reward. [2]

4 Create Agents

4-28

Gt = ∑
k = t

ts + N
γk− tRk + bγN − t + 1V Sts + N θV

Here, b is 0 if Sts+N is a terminal state and 1 otherwise. That is, if Sts+N is not a
terminal state, the discounted future reward includes the discounted state value
function, computed using the critic network V.

Compute the advantage function Dt.

Dt = Gt − V St θV

• Generalized Advantage Estimator (AdvantageEstimateMethod = "gae") —
Compute the advantage function Dt, which is the discounted sum of temporal
difference errors. [3]

Dt = ∑
k = t

ts + N − 1
γλ k− tδk

δk = Rt + bγV St θV

Here, b is 0 if Sts+N is a terminal state and 1 otherwise. λ is a smoothing factor
specified using the GAEFactor option.

Compute the return Gt.

Gt = Dt − V St θV

To specify the discount factor γ for either method, use the DiscountFactor option.
5 Learn from experience mini-batches over K epochs. To specify K, use the NumEpoch

option. For each learning epoch:

a Sample a random mini-batch data set of size M from the current set of
experience. To specify M, use the MiniBatchSize option. Each element of the
mini-batch data set contains a current experience and the corresponding return
and advantage function values.

b Update the critic parameters by minimizing the loss Lcritic across all sampled
mini-batch data.

Lcritic θV = 1
M ∑

i = 1

M
Gi− V Si θV

2

 Proximal Policy Optimization Agents

4-29

c Update the actor parameters by minimizing the loss Lactor across all sampled
mini-batch data. If the EntropyLossWeight option is greater than zero, then
additional entropy loss is added to Lactor, which encourages policy exploration.

Lactor θμ = − 1
M ∑

i = 1

M
min ri θμ ∗ Di, ci θμ ∗ Di

ri θμ =
μAi Si θμ

μAi Si θμ, old

ci θμ = max min ri θμ , 1 + ε , 1− ε

Here:

• Di, Gi are the advantage function and return value for the ith element of the
mini-batch, respectively.

• μi(Si|θμ) is the probability of taking action Ai when in state Si, given the
updated policy parameters θμ.

• μi(Si|θμ,old) is the probability of taking action Ai when in state Si, given the
previous policy parameters (θμ,old) from before the current learning epoch.

• ε is the clip factor specified using the ClipFactor option.
6 Repeat steps 3 through 5 for each until the training episode reaches a terminal state.

References
[1] Schulman, J., et al. "Proximal Policy Optimization Algorithms," Technical Report,

ArXiv, 2017.

[2] Mnih, V., et al. "Asynchronous methods for deep reinforcement learning," International
Conference on Machine Learning, 2016.

[3] Schulman, J., et al. "High-Dimensional Continuous Control Using Generalized
Advantage Estimation," Technical Report, ArXiv, 2018.

See Also
rlACAgent | rlPPOAgentOptions | rlRepresentation

4 Create Agents

4-30

More About
• “Reinforcement Learning Agents” on page 4-2
• “Create Policy and Value Function Representations” on page 3-2
• “Train Reinforcement Learning Agents” on page 5-2

 See Also

4-31

Custom Agents
To implement your own custom reinforcement learning algorithms, you can create a
custom agent by creating a subclass of a custom agent class. For more information about
creating MATLAB classes, see “User-Defined Classes” (MATLAB).

Create Template Class
To define your custom agent, first create a class that is a subclass of the
rl.agent.CustomAgent class. As an example, this topic describes the custom LQR
agent trained in “Train Custom LQR Agent” on page 5-185. As a starting point for your
own agent, you can open and modify this custom agent class. To do so, add the example
files to the path and open the file. In the MATLAB command window, type:

edit LQRCustomAgent.m

This class has the following class definition, which indicates the agent class name and the
associated abstract agent.

classdef LQRCustomAgent < rl.agent.CustomAgent

To define your agent you must specify the following:

• Agent properties
• Constructor function
• Critic representation that estimates the discounted long-term reward (if required for

learning)
• Actor representation that selects an action based on the current observation (if

required for learning)
• Required agent methods
• Optional agent methods

Agent Properties
In the properties section of the class file, specify any parameters necessary for
creating and training the agent. These parameters can include:

• Discount factor for discounting future rewards

4 Create Agents

4-32

• Configuration parameters for exploration models, such as noise models or epsilon-
greedy exploration

• Experience buffers for using replay memory
• Mini-batch sizes for sampling from the experience buffer
• Number of steps to look ahead during training

For more information on potential agent properties, see the option sets for the built-in
Reinforcement Learning Toolbox agents.

The rl.Agent.CustomAgent class already includes properties for the agent sample
time (SampleTime) and the action and observation specifications (ActionInfo and
ObservationInfo, respectively).

The custom LQR agent defines the following agent properties.

properties
 % Q
 Q

 % R
 R

 % Feedback gain
 K

 % Discount Factor
 Gamma = 0.95

 % Critic
 Critic

 % Buffer for K
 KBuffer
 % Number of updates for K
 KUpdate = 1

 % Number for estimator update
 EstimateNum = 10
end

properties (Access = private)
 Counter = 1
 YBuffer

 Custom Agents

4-33

 HBuffer
end

Constructor Function
To create your custom agent, you must define a constructor function that:

• Defines the action and observation specifications. For more information about creating
these specifications, see rlNumericSpec and rlFiniteSetSpec.

• Creates actor and critic representations as required by your training algorithm. For
more information, see rlRepresentation.

• Configures agent properties.
• Calls the constructor of the base abstract class.

For example, the LQRCustomAgent constructor defines continuous action and
observation spaces and creates a critic representation. The createCritic function is an
optional helper function used for defining the critic representation.

function obj = LQRCustomAgent(Q,R,InitialK)
 % Check the number of input arguments
 narginchk(3,3);

 % Call the abstract class constructor
 obj = obj@rl.agent.CustomAgent();

 % Set the Q and R matrices
 obj.Q = Q;
 obj.R = R;

 % Define the observation and action spaces
 obj.ObservationInfo = rlNumericSpec([size(Q,1),1]);
 obj.ActionInfo = rlNumericSpec([size(R,1),1]);

 % Create the critic representation
 obj.Critic = createCritic(obj);

 % Initialize the gain matrix
 obj.K = InitialK;

 % Initialize the experience buffers
 obj.YBuffer = zeros(obj.EstimateNum,1);
 num = size(Q,1) + size(R,1);

4 Create Agents

4-34

 obj.HBuffer = zeros(obj.EstimateNum,0.5*num*(num+1));
 obj.KBuffer = cell(1,1000);
 obj.KBuffer{1} = obj.K;
end
end

Actor and Critic Representations
If your learning algorithm uses a critic representation to estimate the long term reward,
an actor for selecting an action, or both, you must add these as agent properties. You
must then create these representations when you create your agent; that is, in the
constructor function. For more information on creating actors and critics, see “Create
Policy and Value Function Representations” on page 3-2.

For example, the custom LQR agent uses a critic representation, stored in its Critic
property, and no actor. The critic creation is implemented in the getCritic helper
function, which is called from the LQRCustomAgent constructor.

function critic = createCritic(obj)
 nQ = size(obj.Q,1);
 nR = size(obj.R,1);
 n = nQ+nR;
 w0 = 0.1*ones(0.5*(n+1)*n,1);
 critic = rlRepresentation(@(x,u) computeQuadraticBasis(x,u,n),w0,...
 getObservationInfo(obj),getActionInfo(obj));
 critic.Options.GradientThreshold = 1;
 critic = critic.setLoss('mse');
end

In this case, the critic is an rlLinearBasisRepresentation object created using the
rlRepresentation function. To create such a representation, you must specify the
handle to a custom basis function, which in this case is the computeQuadraticBasis
function. For more information on this critic representation, see “Train Custom LQR
Agent” on page 5-185.

Required Functions
To create a custom reinforcement learning agent you must define the following
implementation functions. To call these functions in your own code, use the wrapper
methods from the abstract base class. For example, to call getActionImpl, use
getAction. The wrapper methods have the same input and output arguments as the
implementation methods.

 Custom Agents

4-35

Function Description
getActionImpl Selects an action by evaluating the agent policy for a

given observation.
getActionWithExplorationIm
pl

Selects an action using the exploration model of the
agent

learnImpl Learns from the current experiences and returns an
action with exploration

Within your implementation functions, to evaluate your actor and critic representations,
you can use the evaluate function. To evaluate:

• A critic with only observation input signals, obtain the value function V using:

V = evaluate(this.Critic,Observation);

• An critic with both observation and action input signals, obtain the Q function Q using:

Q = evaluate(this.Critic,[Observation,Action]);

• An actor with a continuous action space, obtain the action value A using:

A = evaluate(this.Actor,Observation);

If the actor has a continuous action space, A contains the values of the action signals.
If the actor has a discrete action space, A contains the probability of taking each
action.

For the preceding syntaxes commands, Observation and Action are cell arrays.

getActionImpl Function

The getActionImpl function is used to evaluate the policy of your agent and select an
action. This function must have the following signature, where obj is the agent object,
Observation is the current observation, and action is the selected action.

function action = getActionImpl(obj,Observation)

For the custom LQR agent, you select an action by applying the u=-Kx control law.

function action = getActionImpl(obj,Observation)
 % Given the current state of the system, return an action.
 action = -obj.K*Observation{:};
end

4 Create Agents

4-36

getActionWithExplorationImpl Function

The getActionWithExplorationImpl function selects an action using the exploration
model of your agent. Using this function you can implement algorithms such as epsilon-
greedy exploration. This function must have the following signature, where obj is the
agent object, Observation is the current observation, and action is the selected
action.

function action = getActionWithExplorationImpl(obj,Observation)

For the custom LQR agent, the getActionWithExplorationImpl function adds
random white noise to an action selected using the current agent policy.

function action = getActionWithExplorationImpl(obj,Observation)
 % Given the current observation, select an action
 action = getAction(obj,Observation);

 % Add random noise to the action
 num = size(obj.R,1);
 action = action + 0.1*randn(num,1);
end

learnImpl Function

The learnImpl function defines how the agent learns from the current experience. This
function implements the custom learning algorithm of your agent by updating the policy
parameters and selecting an action with exploration. This function must have the
following signature, where obj is the agent object, exp is the current agent experience,
and action is the selected action.

function action = learnImpl(obj,exp)

The agent experience, is the cell array exp =
{state,action,reward,nextstate,isdone}. Here:

• state is the current observation.
• action is the current action.
• reward is the current reward.
• nextState is the next observation.
• isDone is a logical flag indicating that the training episode is complete.

For the custom LQR agent, the critic parameters are updated every N steps.

 Custom Agents

4-37

function action = learnImpl(obj,exp)
 % Parse the experience input
 x = exp{1}{1};
 u = exp{2}{1};
 dx = exp{4}{1};
 y = (x'*obj.Q*x + u'*obj.R*u);
 num = size(obj.Q,1) + size(obj.R,1);

 % Wait N steps before updating critic parameters
 N = obj.EstimateNum;
 h1 = computeQuadraticBasis(x,u,num);
 h2 = computeQuadraticBasis(dx,-obj.K*dx,num);
 H = h1 - obj.Gamma* h2;
 if obj.Counter<=N
 obj.YBuffer(obj.Counter) = y;
 obj.HBuffer(obj.Counter,:) = H;
 obj.Counter = obj.Counter + 1;
 else
 % Update the critic parameters based on the batch of
 % experiences
 H_buf = obj.HBuffer;
 y_buf = obj.YBuffer;
 theta = (H_buf'*H_buf)\H_buf'*y_buf;
 setLearnableParameterValues(obj.Critic,{theta});

 % Derive a new gain matrix based on the new critic parameters
 obj.K = getNewK(obj);

 % Reset the experience buffers
 obj.Counter = 1;
 obj.YBuffer = zeros(N,1);
 obj.HBuffer = zeros(N,0.5*num*(num+1));
 obj.KUpdate = obj.KUpdate + 1;
 obj.KBuffer{obj.KUpdate} = obj.K;
 end

 % Find and return an action with exploration
 action = getActionWithExploration(obj,exp{4});
end

Optional Functions
Optionally, you can define how your agent is reset at the start of training by specifying a
resetImpl function with the following function signature, where obj is the agent object.

4 Create Agents

4-38

Using this function, you can set the agent into a know or random condition before
training.

function resetImpl(ob)

Also, you can define any other helper functions in your custom agent class as required.
For example, the custom LQR agent defines a createCritic function for creating the
critic representation and a getNewK function that derives the feedback gain matrix from
the trained critic parameters.

Create Custom Agent
Once you have defined your custom agent class, create an instance of it in the MATLAB
workspace. For example, to create the custom LQR agent, define the Q, R, InitialK
values, and call the constructor function.

Q = [10,3,1;3,5,4;1,4,9];
R = 0.5*eye(3);
K0 = place(A,B,[0.4,0.8,0.5]);
agent = LQRCustomAgent(Q,R,K0);

After validating the environment object, you can use it to train a reinforcement learning
agent. For an example that trains the custom LQR agent, see “Train Custom LQR Agent”
on page 5-185.

See Also
train

More About
• “Reinforcement Learning Agents” on page 4-2
• “Create Policy and Value Function Representations” on page 3-2
• “Train Reinforcement Learning Agents” on page 5-2

 See Also

4-39

Train and Validate Agents

• “Train Reinforcement Learning Agents” on page 5-2
• “Train DQN Agent to Balance Cart-Pole System” on page 5-10
• “Train PG Agent to Balance Cart-Pole System” on page 5-18
• “Train AC Agent to Balance Cart-Pole System” on page 5-24
• “Train PG Agent with Baseline to Control Double Integrator System” on page 5-31
• “Train DDPG Agent to Control Double Integrator System” on page 5-38
• “Train DQN Agent to Swing Up and Balance Pendulum” on page 5-46
• “Train DDPG Agent to Swing Up and Balance Pendulum” on page 5-55
• “Train DDPG Agent to Swing Up and Balance Cart-Pole System” on page 5-64
• “Train DDPG Agent to Swing Up and Balance Pendulum with Bus Signal”

on page 5-73
• “Train DDPG Agent to Swing Up and Balance Pendulum with Image Observation”

on page 5-83
• “Create Agent Using Deep Network Designer and Train Using Image Observations”

on page 5-93
• “Train AC Agent to Balance Cart-pole System Using Parallel Computing”

on page 5-110
• “Train DDPG Agent to Control Flying Robot” on page 5-116
• “Train DDPG Agent for Adaptive Cruise Control” on page 5-124
• “Train DQN Agent for Lane Keeping Assist” on page 5-134
• “Train DDPG Agent for Path Following Control” on page 5-144
• “Train DQN Agent for Lane Keeping Assist Using Parallel Computing” on page 5-155
• “Train Biped Robot to Walk Using DDPG Agent” on page 5-165
• “Quadruped Robot Locomotion Using DDPG Agent” on page 5-174
• “Train Custom LQR Agent” on page 5-185
• “Imitate MPC Controller for Lane Keep Assist” on page 5-191

5

Train Reinforcement Learning Agents
Once you have created an environment and reinforcement learning agent, you can train
the agent in the environment using the train function. To configure your training, use
the rlTrainingOptions function. For example, create a training option set opt, and
train agent agent in environment env.

opt = rlTrainingOptions(...
 'MaxEpisodes',1000,...
 'MaxStepsPerEpisode',1000,...
 'StopTrainingCriteria',"AverageReward",...
 'StopTrainingValue',480);
trainStats = train(agent,env,opt);

For more information on creating:

• Agents, see “Reinforcement Learning Agents” on page 4-2
• Environments, see “Create MATLAB Environments for Reinforcement Learning” on

page 2-2 and “Create Simulink Environments for Reinforcement Learning” on page 2-6

train updates the agent as training progresses. To preserve the original agent
parameters for later use, save the agent to a MAT-file.

save("initialAgent.mat","agent")

Training terminates automatically when the conditions specified in
StopTrainingCriteria and StopTrainingValue of your rlTrainingOptions
object are satisfied. To manually terminate training in progress, type ctrl-C or, in the
Reinforcement Learning Episode Manager, click Stop Training. Because train updates
the agent at each episode, you can resume training by calling
train(agent,env,trainOpts) again, without losing the trained parameters learned
during the first call to train.

Training Algorithm
In general, training performs the following iterative steps:

1 Initialize the agent.
2 For each episode:

a Reset the environment.

5 Train and Validate Agents

5-2

b Get the initial observation s0 from the environment.
c Compute the initial action a0 = μ(s0), where μ(s) is the current policy.
d Set the current action to the initial action (a←a0), and set the current observation

to the initial observation (s←s0).
e While the episode is not finished or terminated:

i Step the environment with action a to obtain the next observation s' and the
reward r.

ii Learn from the experience set (s,a,r,s').
iii Compute the next action a' = μ(s').
iv Update the current action with the next action (a←a') and update the current

observation with the next observation (s←s').
v Break if the episode termination conditions defined in the environment are

met.
3 If the training termination condition is met, terminate training. Otherwise, begin the

next episode.

The specifics of how the software performs these steps depends on the configuration of
the agent and environment. For instance, resetting the environment at the start of each
episode can include randomizing initial state values, if you configure your environment to
do so. For more information on agents and their training algorithms, see “Reinforcement
Learning Agents” on page 4-2.

Episode Manager
By default, calling the train function opens the Reinforcement Learning Episode
Manager, which lets you visualize the progress of the training. The Episode Manager plot
shows the reward for each episode (EpisodeReward), a running average reward value
(AverageReward). Also, for agents that have critics, plot shows the critics estimate of the
discounted long-term reward at the start of each episode (EpisodeQ0). The Episode
Manager also displays various episode and training statistics. This episode and training
information is also returned by the train function.

 Train Reinforcement Learning Agents

5-3

For agents with a critic, Episode Q0 is the estimate of the discounted long-term reward
at the start of each episode, given the initial observation of the environment. As training
progresses, Episode Q0 should approach the true discounted long-term reward if the
critic is well-designed, as shown in the preceding figure.

To turn off the Reinforcement Learning Episode Manager, set the Plots option of
rlTrainingOptions to "none".

Save Candidate Agents
During training, you can save candidate agents that meet conditions you specify in
SaveAgentCriteria and SaveAgentValue of your rlTrainingOptions object. For
instance, you can save any agent whose episode reward exceeds a certain value, even if
the overall condition for terminating training is not yet satisfied. For example, to save
agents when the episode reward is greater than 100, use:
opt = rlTrainingOptions('SaveAgentCriteria',"EpisodeReward",'SaveAgentValue',100');

5 Train and Validate Agents

5-4

train stores saved agents in a MAT-file in the folder you specify using the
SaveAgentDirectory option of rlTrainingOptions. Saved agents can be useful, for
instance, to allow you to test candidate agents generated during a long-running training
process. For details about saving criteria and saving location, see rlTrainingOptions.

After training is complete, you can save the final trained agent from the MATLAB
workspace using the save function. For example, save the agent myAgent to the file
finalAgent.mat in the current working directory.
save(opt.SaveAgentDirectory + "/finalAgent.mat",'agent')

By default, when DDPG and DQN agents are saved, the experience buffer data is not
saved. If you plan to further train your saved agent, you can start training with the
previous experience buffer as a starting point. In this case, set the
SaveExperienceBufferWithAgent agent option to true. For some agents, such as
those with large experience buffers and image-based observations, the memory required
for saving their experience buffer is large. In these cases, you must ensure that there is
enough memory available for the saved agents.

Parallel Computing
You can accelerate agent training by running parallel training simulations. If you have:

• Parallel Computing Toolbox software, you can run parallel simulations on multicore
computers

• MATLAB Parallel Serversoftware, you can run parallel simulations on computer
clusters or cloud resources

When training with parallel computing, the host client sends copies of the agent and
environment to each parallel worker. Each worker simulates the agent within the
environment and sends their simulation data back to the host. The host agent learns from
the data sent by the workers and sends the updated policy parameters back to the
workers.

 Train Reinforcement Learning Agents

5-5

To create a parallel pool of N workers, type:

pool = parpool(N);

If you do not create a parallel pool using parpool, the train function automatically
creates one using your default parallel pool preferences. For more information on
specifying these preferences, see “Specify Your Parallel Preferences” (Parallel Computing
Toolbox).

For off-policy agents, such as DDPG and DQN, do not use all of your cores for parallel
training. For example, if your CPU has six cores, train with four workers. Doing so
provides more resources for the host client to compute gradients based on the
experiences sent back from the workers. Limiting the number of workers is not necessary
for on-policy agents, such as PG and AC, when the gradients are computed on the
workers.

5 Train and Validate Agents

5-6

For more information on configuring your training to use parallel computing, see
UseParallel and ParallelizationOptions in rlTrainingOptions.

To benefit from parallel computing, the computational cost for simulating the
environment must be relatively expensive compared to the optimization of parameters
when sending experiences back to the host. If the simulation of the environment is not
expensive enough, the workers idle while waiting for the host to learn and send back
updated parameters.

When sending experiences back from the workers, you can improve sample efficiency
when the ratio R = (complexity of environment step)/(complexity of learning) is large. If
the environment is fast to simulate (R is small), you are unlikely to get any benefit from
experience-based parallelization. If the environment is expensive to simulate but it is also
expensive to learn (for example, if the mini-batch size is large) then you are also unlikely
to improve sample efficiency. However in this case, for off-policy agents, you can reduce
the mini-batch size to make R larger, which improves sample efficiency.

For an example that trains an agent using parallel computing in:

• MATLAB, see “Train AC Agent to Balance Cart-pole System Using Parallel Computing”
on page 5-110

• Simulink, see “Train DQN Agent for Lane Keeping Assist Using Parallel Computing” on
page 5-155

GPU Acceleration
When using deep neural network function approximators for your actor or critic
representations, you can speed up training by performing representation operations on a
GPU rather than a CPU. To do so, set the UseDevice option to "GPU".

opt = rlRepresentationOptions('UseDevice',"gpu");

The size of any performance improvement depends on your specific application and
network configuration.

Validate Trained Policy
To validate your trained agent, you can simulate the agent within the training
environment using the sim function. To configure the simulation, use
rlSimulationOptions.

 Train Reinforcement Learning Agents

5-7

When validating your agent, consider checking how your agent handles:

• Changes to simulation initial conditions. To change the model initial conditions, modify
the reset function for the environment. For example reset functions, see:

• “Create MATLAB Environment using Custom Functions” on page 2-47
• “Create Custom MATLAB Environment from Template” on page 2-56
• “Create Simulink Environments for Reinforcement Learning” on page 2-6

• Mismatches between the training and simulation environment dynamics. To do so,
create test environments in the same way that you created the training environment,
modifying the environment behavior.

As with parallel training, if you have Parallel Computing Toolbox software, you can run
multiple parallel simulations on multicore computers. If you have MATLAB Parallel Server
software, you can run multiple parallel simulations on computer clusters or cloud
resources. For more information on configuring your simulation to use parallel
computing, see UseParallel and ParallelizationOptions in
rlSimulationOptions.

Environment Visualization
If your training environment implements the plot method, you can visualize the
environment behavior during training and simulation. If you call plot(env) before
training or simulation, where env is your environment object, then the visualization
updates during training to allow you to visualize the progress of each episode or
simulation.

Environment visualization is not supported when training or simulating your agent using
parallel computing.

For custom environments, you must implement your own plot method. For more
information on creating custom environments with plot functions, see “Create Custom
MATLAB Environment from Template” on page 2-56.

See Also
train

5 Train and Validate Agents

5-8

More About
• “Reinforcement Learning Agents” on page 4-2

 See Also

5-9

Train DQN Agent to Balance Cart-Pole System
This example shows how to train a deep Q-learning network (DQN) agent to balance a
cart-pole system modeled in MATLAB®.

For more information on DQN agents, see “Deep Q-Network Agents” on page 4-11. For an
example that trains a DQN agent in Simulink®, see “Train DQN Agent to Swing Up and
Balance Pendulum” on page 5-46.

Cart-pole MATLAB Environment

The reinforcement learning environment for this example is a pole attached to an
unactuated joint on a cart, which moves along a frictionless track. The training goal is to
make the pendulum stand upright without falling over.

For this environment:

• The upward balanced pendulum position is 0 radians, and the downward hanging
position is pi radians

• The pendulum starts upright with an initial angle of +/- 0.05 radians
• The force action signal from the agent to the environment is from -10 to 10 N
• The observations from the environment are the position and velocity of the cart, the

pendulum angle, and its derivative

5 Train and Validate Agents

5-10

• The episode terminates if the pole is more than 12 degrees from vertical, or the cart
moves more than 2.4 m from the original position

• A reward of +1 is provided for every time step that the pole remains upright. A penalty
of -5 is applied when the pendulum falls.

For more information on this model, see “Load Predefined Control System Environments”
on page 2-24.

Create Environment Interface

Create a predefined environment interface for the pendulum.

env = rlPredefinedEnv("CartPole-Discrete")

env =
 CartPoleDiscreteAction with properties:

 Gravity: 9.8000
 MassCart: 1
 MassPole: 0.1000
 Length: 0.5000
 MaxForce: 10
 Ts: 0.0200
 ThetaThresholdRadians: 0.2094
 XThreshold: 2.4000
 RewardForNotFalling: 1
 PenaltyForFalling: -5
 State: [4x1 double]

The interface has a discrete action space where the agent can apply one of two possible
force values to the cart, -10 or 10 N.

Fix the random generator seed for reproducibility.

rng(0)

Create DQN agent

A DQN agent approximates the long-term reward given observations and actions using a
critic value function representation. To create the critic, first create a deep neural
network with two inputs, the state and action, and one output. For more information on
creating a neural network value function representation, see “Create Policy and Value
Function Representations” on page 3-2.

 Train DQN Agent to Balance Cart-Pole System

5-11

statePath = [
 imageInputLayer([4 1 1],'Normalization','none','Name','state')
 fullyConnectedLayer(24,'Name','CriticStateFC1')
 reluLayer('Name','CriticRelu1')
 fullyConnectedLayer(24,'Name','CriticStateFC2')];
actionPath = [
 imageInputLayer([1 1 1],'Normalization','none','Name','action')
 fullyConnectedLayer(24,'Name','CriticActionFC1')];
commonPath = [
 additionLayer(2,'Name','add')
 reluLayer('Name','CriticCommonRelu')
 fullyConnectedLayer(1,'Name','output')];
criticNetwork = layerGraph(statePath);
criticNetwork = addLayers(criticNetwork, actionPath);
criticNetwork = addLayers(criticNetwork, commonPath);
criticNetwork = connectLayers(criticNetwork,'CriticStateFC2','add/in1');
criticNetwork = connectLayers(criticNetwork,'CriticActionFC1','add/in2');

View the critic network configuration.

figure
plot(criticNetwork)

5 Train and Validate Agents

5-12

Specify options for the critic representation using rlRepresentationOptions.

criticOpts = rlRepresentationOptions('LearnRate',0.01,'GradientThreshold',1);

Create the critic representation using the specified neural network and options. You must
also specify the action and observation info for the critic, which you obtain from the
environment interface. For more information, see rlRepresentation.

obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);
critic = rlRepresentation(criticNetwork,obsInfo,actInfo,'Observation',{'state'},'Action',{'action'},criticOpts);

To create the DQN agent, first specify the DQN agent options using
rlDQNAgentOptions.

 Train DQN Agent to Balance Cart-Pole System

5-13

agentOpts = rlDQNAgentOptions(...
 'UseDoubleDQN',false, ...
 'TargetUpdateMethod',"periodic", ...
 'TargetUpdateFrequency',4, ...
 'ExperienceBufferLength',100000, ...
 'DiscountFactor',0.99, ...
 'MiniBatchSize',256);

Then, create the DQN agent using the specified critic representation and agent options.
For more information, see rlDQNAgent.

agent = rlDQNAgent(critic,agentOpts);

Train Agent

To train the agent, first specify the training options. For this example, use the following
options:

• Run each training episode for at most 1000 episodes, with each episode lasting at
most 200 time steps.

• Display the training progress in the Episode Manager dialog box (set the Plots
option) and disable the command line display (set the Verbose option).

• Stop training when the agent receives an average cumulative reward greater than 195
over 10 consecutive episodes. At this point, the agent can balance the pendulum in the
upright position.

For more information, see rlTrainingOptions.

trainOpts = rlTrainingOptions(...
 'MaxEpisodes', 1000, ...
 'MaxStepsPerEpisode', 500, ...
 'Verbose', false, ...
 'Plots','training-progress',...
 'StopTrainingCriteria','AverageReward',...
 'StopTrainingValue',480);

The cart-pole system can be visualized with using the plot function during training or
simulation.

plot(env)

5 Train and Validate Agents

5-14

Train the agent using the train function. This is a computationally intensive process that
takes several minutes to complete. To save time while running this example, load a
pretrained agent by setting doTraining to false. To train the agent yourself, set
doTraining to true.

doTraining = false;
if doTraining
 % Train the agent.
 trainingStats = train(agent,env,trainOpts);
else
 % Load pretrained agent for the example.
 load('MATLABCartpoleDQN.mat','agent');
end

 Train DQN Agent to Balance Cart-Pole System

5-15

Simulate DQN Agent

To validate the performance of the trained agent, simulate it within the cart-pole
environment. For more information on agent simulation, see rlSimulationOptions and
sim. The agent can balance the cart-pole even when simulation time increases to 500.

simOptions = rlSimulationOptions('MaxSteps',500);
experience = sim(env,agent,simOptions);

5 Train and Validate Agents

5-16

totalReward = sum(experience.Reward)

totalReward = 500

See Also
train

More About
• “Deep Q-Network Agents” on page 4-11
• “Train Reinforcement Learning Agents” on page 5-2
• “Create Policy and Value Function Representations” on page 3-2

 See Also

5-17

Train PG Agent to Balance Cart-Pole System
This example shows how to train a policy gradient (PG) agent to balance a cart-pole
system modeled in MATLAB®. For more information on PG agents, see “Policy Gradient
Agents” on page 4-19.

For an example on training a PG agent with baseline, see “Train PG Agent with Baseline
to Control Double Integrator System” on page 5-31 example.

Cart-pole MATLAB Environment

The reinforcement learning environment for this example is a pole attached to an
unactuated joint on a cart, which moves along a frictionless track. The training goal is to
make the pendulum stand upright without falling over.

For this environment:

• The upward balanced pendulum position is 0 radians, and the downward hanging
position is pi radians

• The pendulum starts upright with an initial angle of +/- 0.05 radians
• The force action signal from the agent to the environment is from -10 to 10 N
• The observations from the environment are the position and velocity of the cart, the

pendulum angle, and its derivative

5 Train and Validate Agents

5-18

• The episode terminates if the pole is more than 12 degrees from vertical, or the cart
moves more than 2.4 m from the original position

• A reward of +1 is provided for every time step that the pole remains upright. A penalty
of -5 is applied when the pendulum falls.

For more information on this model, see “Load Predefined Control System Environments”
on page 2-24.

Create Environment Interface

Create a predefined environment interface for the pendulum.

env = rlPredefinedEnv("CartPole-Discrete")

env =
 CartPoleDiscreteAction with properties:

 Gravity: 9.8000
 MassCart: 1
 MassPole: 0.1000
 Length: 0.5000
 MaxForce: 10
 Ts: 0.0200
 ThetaThresholdRadians: 0.2094
 XThreshold: 2.4000
 RewardForNotFalling: 1
 PenaltyForFalling: -5
 State: [4x1 double]

The interface has a discrete action space where the agent can apply one of two possible
force values to the cart, -10 or 10 N.

Obtain the observation and action information from the environment interface.

obsInfo = getObservationInfo(env);
numObservations = obsInfo.Dimension(1);
actInfo = getActionInfo(env);

Fix the random generator seed for reproducibility.

rng(0)

 Train PG Agent to Balance Cart-Pole System

5-19

Create PG agent

A PG agent decides which action to take given observations using an actor
representation. To create the actor, first create a deep neural network with one input (the
observation) and one output (the action). The output size actor network is 2 since the
agent can apply 2 possible actions, 10 or -10. For more information on creating a deep
neural network value function representation, see “Create Policy and Value Function
Representations” on page 3-2.

actorNetwork = [
 imageInputLayer([numObservations 1 1],'Normalization','none','Name','state')
 fullyConnectedLayer(2,'Name','action')];

Specify options for the actor representation using rlRepresentationOptions.

actorOpts = rlRepresentationOptions('LearnRate',1e-2,'GradientThreshold',1);

Create the actor representation using the specified deep neural network and options. You
must also specify the action and observation information for the critic, which you already
obtained from the environment interface. For more information, see rlRepresentation.

actor = rlRepresentation(actorNetwork,obsInfo,actInfo,'Observation',{'state'},'Action',{'action'},actorOpts);

Then, create the agent using the specified actor representation, and the default agent
options. For more information, see rlPGAgent.

agent = rlPGAgent(actor);

Train Agent

To train the agent, first specify the training options. For this example, use the following
options:

• Run each training episode for at most 1000 episodes, with each episode lasting at
most 200 time steps.

• Display the training progress in the Episode Manager dialog box (set the Plots
option) and disable the command line display (set the Verbose option).

• Stop training when the agent receives an average cumulative reward greater than 195
over 100 consecutive episodes. At this point, the agent can balance the pendulum in
the upright position.

For more information, see rlTrainingOptions.

5 Train and Validate Agents

5-20

trainOpts = rlTrainingOptions(...
 'MaxEpisodes', 1000, ...
 'MaxStepsPerEpisode', 200, ...
 'Verbose', false, ...
 'Plots','training-progress',...
 'StopTrainingCriteria','AverageReward',...
 'StopTrainingValue',195,...
 'ScoreAveragingWindowLength',100);

The cart-pole system can be visualized with using the plot function during training or
simulation.

plot(env)

Train the agent using the train function. This is a computationally intensive process that
takes several minutes to complete. To save time while running this example, load a
pretrained agent by setting doTraining to false. To train the agent yourself, set
doTraining to true.

doTraining = false;

if doTraining
 % Train the agent.
 trainingStats = train(agent,env,trainOpts);
else
 % Load pretrained agent for the example.

 Train PG Agent to Balance Cart-Pole System

5-21

 load('MATLABCartpolePG.mat','agent');
end

Simulate PG Agent

To validate the performance of the trained agent, simulate it within the cart-pole
environment. For more information on agent simulation, see rlSimulationOptions and
sim. The agent can balance the cart-pole even when simulation time increases to 500.

simOptions = rlSimulationOptions('MaxSteps',500);
experience = sim(env,agent,simOptions);

5 Train and Validate Agents

5-22

totalReward = sum(experience.Reward)

totalReward = 500

See Also
train

More About
• “Policy Gradient Agents” on page 4-19
• “Train Reinforcement Learning Agents” on page 5-2
• “Create Policy and Value Function Representations” on page 3-2

 See Also

5-23

Train AC Agent to Balance Cart-Pole System
This example shows how to train an actor-critic (AC) agent to balance a cart-pole system
modeled in MATLAB®.

For more information on AC agents, see “Actor-Critic Agents” on page 4-23. For an
example on training AC agent using parallel computing, see “Train AC Agent to Balance
Cart-pole System Using Parallel Computing” on page 5-110 example.

Cart-Pole MATLAB Environment

The reinforcement learning environment for this example is a pole attached to an
unactuated joint on a cart, which moves along a frictionless track. The training goal is to
make the pendulum stand upright without falling over.

For this environment:

• The upward balanced pendulum position is 0 radians, and the downward hanging
position is pi radians

• The pendulum starts upright with an initial angle of +/- 0.05 radians
• The force action signal from the agent to the environment is from -10 to 10 N
• The observations from the environment are the position and velocity of the cart, the

pendulum angle, and its derivative

5 Train and Validate Agents

5-24

• The episode terminates if the pole is more than 12 degrees from vertical, or the cart
moves more than 2.4 m from the original position

• A reward of +1 is provided for every time step that the pole remains upright. A penalty
of -5 is applied when the pendulum falls.

For more information on this model, see “Load Predefined Control System Environments”
on page 2-24.

Create Environment Interface

Create a predefined environment interface for the pendulum.

env = rlPredefinedEnv("CartPole-Discrete")

env =
 CartPoleDiscreteAction with properties:

 Gravity: 9.8000
 MassCart: 1
 MassPole: 0.1000
 Length: 0.5000
 MaxForce: 10
 Ts: 0.0200
 ThetaThresholdRadians: 0.2094
 XThreshold: 2.4000
 RewardForNotFalling: 1
 PenaltyForFalling: -5
 State: [4x1 double]

env.PenaltyForFalling = -10;

The interface has a discrete action space where the agent can apply one of two possible
force values to the cart, -10 or 10 N.

Obtain the observation and action information from the environment interface.

obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

Fix the random generator seed for reproducibility.

rng(0)

 Train AC Agent to Balance Cart-Pole System

5-25

Create AC Agent

An AC agent approximates the long-term reward given observations and actions using a
critic value function representation. To create the critic, first create a deep neural
network with one input (the observation) and one output (the state value). The input size
of the critic network is [4 1 1] since the environment has 4 observations. For more
information on creating a deep neural network value function representation, see “Create
Policy and Value Function Representations” on page 3-2.

criticNetwork = [
 imageInputLayer([4 1 1],'Normalization','none','Name','state')
 fullyConnectedLayer(1,'Name','CriticFC')];

Specify options for the critic representation using rlRepresentationOptions.

criticOpts = rlRepresentationOptions('LearnRate',8e-3,'GradientThreshold',1);

Create the critic representation using the specified deep neural network and options. You
must also specify the action and observation information for the critic, which you already
obtained from the environment interface. For more information, see rlRepresentation.

critic = rlRepresentation(criticNetwork,obsInfo,'Observation',{'state'},criticOpts);

An AC agent decides which action to take given observations using an actor
representation. To create the actor, create a deep neural network with one input (the
observation) and one output (the action). The output size of the actor network is 2 since
the environment has 2 possible actions, -10 and 10.

Construct the actor in a similar manner to the critic.

actorNetwork = [
 imageInputLayer([4 1 1],'Normalization','none','Name','state')
 fullyConnectedLayer(2,'Name','action')];

actorOpts = rlRepresentationOptions('LearnRate',8e-3,'GradientThreshold',1);

actor = rlRepresentation(actorNetwork,obsInfo,actInfo,...
 'Observation',{'state'},'Action',{'action'},actorOpts);

To create the AC agent, first specify the AC agent options using rlACAgentOptions.

agentOpts = rlACAgentOptions(...
 'NumStepsToLookAhead',32, ...
 'DiscountFactor',0.99);

5 Train and Validate Agents

5-26

Then, create the agent using the specified actor representation and the default agent
options. For more information, see rlACAgent.

agent = rlACAgent(actor,critic,agentOpts);

Train Agent

To train the agent, first specify the training options. For this example, use the following
options:

• Run each training episode for at most 1000 episodes, with each episode lasting at
most 500 time steps.

• Display the training progress in the Episode Manager dialog box (set the Plots
option) and disable the command line display (set the Verbose option).

• Stop training when the agent receives an average cumulative reward greater than 480
over 10 consecutive episodes. At this point, the agent can balance the pendulum in the
upright position.

For more information, see rlTrainingOptions.

trainOpts = rlTrainingOptions(...
 'MaxEpisodes',1000,...
 'MaxStepsPerEpisode',500,...
 'Verbose',false,...
 'Plots','training-progress',...
 'StopTrainingCriteria','AverageReward',...
 'StopTrainingValue',480,...
 'ScoreAveragingWindowLength',10);

The cart-pole system can be visualized with using the plot function during training or
simulation.

plot(env)

 Train AC Agent to Balance Cart-Pole System

5-27

Train the agent using the train function. This is a computationally intensive process that
takes several minutes to complete. To save time while running this example, load a
pretrained agent by setting doTraining to false. To train the agent yourself, set
doTraining to true.

doTraining = false;

if doTraining
 % Train the agent.
 trainingStats = train(agent,env,trainOpts);
else
 % Load pretrained agent for the example.
 load('MATLABCartpoleAC.mat','agent');
end

5 Train and Validate Agents

5-28

Simulate AC Agent

To validate the performance of the trained agent, simulate it within the cart-pole
environment. For more information on agent simulation, see rlSimulationOptions and
sim.

simOptions = rlSimulationOptions('MaxSteps',500);
experience = sim(env,agent,simOptions);

 Train AC Agent to Balance Cart-Pole System

5-29

totalReward = sum(experience.Reward)

totalReward = 500

See Also
train

More About
• “Actor-Critic Agents” on page 4-23
• “Train Reinforcement Learning Agents” on page 5-2
• “Create Policy and Value Function Representations” on page 3-2

5 Train and Validate Agents

5-30

Train PG Agent with Baseline to Control Double
Integrator System

This example shows how to train a policy gradient (PG) agent with baseline to control a
second-order dynamic system modeled in MATLAB®.

For more information on the basic PG agent with no baseline, see the example “Train PG
Agent to Balance Cart-Pole System” on page 5-18.

Double Integrator MATLAB Environment

The reinforcement learning environment for this example is a second-order system is a
double integrator with a gain. The training goal is to control the position of a mass in a
second-order system by applying a force input.

For this environment:

• The mass starts at initial position of +/- 2 units.
• The force action signal from the agent to the environment is from -2 to 2 N.
• The observations from the environment are the position and velocity of the mass.
• The episode terminates if the mass moves more than 5 m from the original position or

if x < 0 . 01
• The reward rt, provided at every time step, is a discretization of r t :

r t = − x t ′ Q x t + u t ′ R u t

 Train PG Agent with Baseline to Control Double Integrator System

5-31

where:

• x is the state vector of the mass.
• u is the force applied to the mass.
• Q is the weights on the control performance. Q = 10 0; 0 1
• R is the weight on the control effort. R = 0 . 01

For more information on this model, see “Load Predefined Control System Environments”
on page 2-24.

Create Double Integrator MATLAB Environment Interface

Create a predefined environment interface for the pendulum.

env = rlPredefinedEnv("DoubleIntegrator-Discrete")

env =
 DoubleIntegratorDiscreteAction with properties:

 Gain: 1
 Ts: 0.1000
 MaxDistance: 5
 GoalThreshold: 0.0100
 Q: [2x2 double]
 R: 0.0100
 MaxForce: 2
 State: [2x1 double]

The interface has a discrete action space where the agent can apply one of three possible
force values to the mass: -2, 0 or 2 N.

Obtain the observation and action information from the environment interface.

obsInfo = getObservationInfo(env);
numObservations = obsInfo.Dimension(1);
actInfo = getActionInfo(env);
numActions = numel(actInfo.Elements);

Fix the random generator seed for reproducibility.

rng(0)

5 Train and Validate Agents

5-32

Create PG agent actor

A PG agent decides which action to take given observations using an actor
representation. To create the actor, first create a deep neural network with one input (the
observation) and one output (the action). For more information on creating a deep neural
network value function representation, see “Create Policy and Value Function
Representations” on page 3-2.

actorNetwork = [
 imageInputLayer([numObservations 1 1],'Normalization','none','Name','state')
 fullyConnectedLayer(numActions,'Name','action','BiasLearnRateFactor',0)];

Specify options for the actor representation using rlRepresentationOptions.

actorOpts = rlRepresentationOptions('LearnRate',5e-3,'GradientThreshold',1);

Create the actor representation using the specified deep neural network and options. You
must also specify the action and observation information for the critic, which you already
obtained from the environment interface. For more information, see rlRepresentation.

actor = rlRepresentation(actorNetwork,actorOpts,'Observation',{'state'},obsInfo,'Action',{'action'},actInfo);

Create PG agent baseline

A baseline varies with state can reduce the variance of the expected value of the update
and thus reduce the speed of learning for PG agent. A possible choice for the baseline is
an estimate of the state value function [1].

In this case, the baseline representation is a deep neural network with one input (the
state) and one output (the state value).

Construct the baseline in a similar manner to the actor.

baselineNetwork = [
 imageInputLayer([numObservations 1 1],'Normalization','none','Name','state')
 fullyConnectedLayer(8,'Name','BaselineFC')
 reluLayer('Name','CriticRelu1')
 fullyConnectedLayer(1,'Name','BaselineFC2','BiasLearnRateFactor',0)];

baselineOpts = rlRepresentationOptions('LearnRate',5e-3,'GradientThreshold',1);

baseline = rlRepresentation(baselineNetwork,baselineOpts,'Observation',{'state'},obsInfo);

To create the PG agent with baseline, specify the PG agent options with UseBaseline
option set to true using rlPGAgentOptions.

 Train PG Agent with Baseline to Control Double Integrator System

5-33

agentOpts = rlPGAgentOptions(...
 'UseBaseline',true, ...
 'DiscountFactor', 0.99);

Then, create the agent using the specified actor representation, critic representation and
agent options. For more information, see rlPGAgent.

agent = rlPGAgent(actor,baseline,agentOpts);

Train Agent

To train the agent, first specify the training options. For this example, use the following
options:

• Run each training episode for at most 1000 episodes, with each episode lasting at
most 200 time steps.

• Display the training progress in the Episode Manager dialog box (set the Plots
option) and disable the command line display (set the Verbose option).

• Stop training when the agent receives an average cumulative reward greater than -40
over 5 consecutive episodes. At this point, the agent can control the position of the
mass using minimal control effort.

For more information, see rlTrainingOptions.

trainOpts = rlTrainingOptions(...
 'MaxEpisodes',1000, ...
 'MaxStepsPerEpisode',200, ...
 'Verbose',false, ...
 'Plots','training-progress',...
 'StopTrainingCriteria','AverageReward',...
 'StopTrainingValue',-45);

The double integrator system can be visualized with plot(env) during training or
simulation.

plot(env)

5 Train and Validate Agents

5-34

Train the agent using the train function. This is a computationally intensive process that
takes several minutes to complete. To save time while running this example, load a
pretrained agent by setting doTraining to false. To train the agent yourself, set
doTraining to true.

doTraining = false;

if doTraining
 % Train the agent.
 trainingStats = train(agent,env,trainOpts);
else
 % Load pretrained agent for the example.
 load('DoubleIntegPGBaseline.mat','agent');
end

 Train PG Agent with Baseline to Control Double Integrator System

5-35

Simulate PG Agent

To validate the performance of the trained agent, simulate it within the double integrator
environment. For more information on agent simulation, see rlSimulationOptions and
sim.

simOptions = rlSimulationOptions('MaxSteps',500);
experience = sim(env,agent,simOptions);

5 Train and Validate Agents

5-36

totalReward = sum(experience.Reward)

totalReward = -41.5626

References

[1] Sutton, Barto. "Reinforcement Learning: An Introduction," The MIT Press, Cambridge,
2nd Edition, p. 330, 2018.

See Also
rlPGAgent

More About
• “Policy Gradient Agents” on page 4-19
• “Train PG Agent to Balance Cart-Pole System” on page 5-18
• “Train Reinforcement Learning Agents” on page 5-2
• “Create Policy and Value Function Representations” on page 3-2

 See Also

5-37

Train DDPG Agent to Control Double Integrator System
This example shows how to train a deep deterministic policy gradient (DDPG) agent to
control a second-order dynamic system modeled in MATLAB®.

For more information on DDPG agents, see “Deep Deterministic Policy Gradient Agents”
on page 4-15. For an example that trains a DDPG agent in Simulink®, see “Train DDPG
Agent to Swing Up and Balance Pendulum” on page 5-55.

Double Integrator MATLAB Environment

The reinforcement learning environment for this example is a second-order system is a
double integrator with a gain. The training goal is to control the position of a mass in a
second-order system by applying a force input.

For this environment:

• The mass starts at initial position of +/- 4 units.
• The force action signal from the agent to the environment is from -2 to 2 N.
• The observations from the environment are the position and velocity of the mass.
• The episode terminates if the mass moves more than 5 m from the original position or

if x < 0 . 01
• The reward rt, provided at every time step, is a discretization of r t :

r t = − x t ′ Q x t + u t ′ R u t

5 Train and Validate Agents

5-38

where:

• x is the state vector of the mass.
• u is the force applied to the mass.
• Q is the weights on the control performance. Q = 10 0; 0 1
• R is the weight on the control effort. R = 0 . 01

For more information on this model, see “Load Predefined Control System Environments”
on page 2-24.

Create Environment Interface

Create a predefined environment interface for the pendulum.

env = rlPredefinedEnv("DoubleIntegrator-Continuous")

env =
 DoubleIntegratorContinuousAction with properties:

 Gain: 1
 Ts: 0.1000
 MaxDistance: 5
 GoalThreshold: 0.0100
 Q: [2x2 double]
 R: 0.0100
 MaxForce: Inf
 State: [2x1 double]

env.MaxForce = Inf;

The interface has a continuous action space where the agent can apply force values from -
Inf to Inf to the mass.

Obtain the observation and action information from the environment interface.

obsInfo = getObservationInfo(env);
numObservations = obsInfo.Dimension(1);
actInfo = getActionInfo(env);
numActions = numel(actInfo);

Fix the random generator seed for reproducibility.

rng(0)

 Train DDPG Agent to Control Double Integrator System

5-39

Create DDPG agent

A DDPG agent approximates the long-term reward given observations and actions using a
critic value function representation. To create the critic, first create a deep neural
network with two inputs, the state and action, and one output. For more information on
creating a neural network value function representation, see “Create Policy and Value
Function Representations” on page 3-2.

statePath = imageInputLayer([numObservations 1 1],'Normalization','none','Name','state');
actionPath = imageInputLayer([numActions 1 1],'Normalization','none','Name','action');
commonPath = [concatenationLayer(1,2,'Name','concat')
 quadraticLayer('Name','quadratic')
 fullyConnectedLayer(1,'Name','StateValue','BiasLearnRateFactor',0,'Bias',0)];

criticNetwork = layerGraph(statePath);
criticNetwork = addLayers(criticNetwork,actionPath);
criticNetwork = addLayers(criticNetwork,commonPath);

criticNetwork = connectLayers(criticNetwork,'state','concat/in1');
criticNetwork = connectLayers(criticNetwork,'action','concat/in2');

View the critic network configuration.

figure
plot(criticNetwork)

5 Train and Validate Agents

5-40

Specify options for the critic representation using rlRepresentationOptions.

criticOpts = rlRepresentationOptions('LearnRate',5e-3,'GradientThreshold',1);

Create the critic representation using the specified neural network and options. You must
also specify the action and observation info for the critic, which you obtain from the
environment interface. For more information, see rlRepresentation.

critic = rlRepresentation(criticNetwork,obsInfo,actInfo,'Observation',{'state'},'Action',{'action'},criticOpts);

A DDPG agent decides which action to take given observations using an actor
representation. To create the actor, first create a deep neural network with one input, the
observation, and one output, the action.

 Train DDPG Agent to Control Double Integrator System

5-41

Construct the actor similarly to the critic.

actorNetwork = [
 imageInputLayer([numObservations 1 1],'Normalization','none','Name','state')
 fullyConnectedLayer(numActions,'Name','action','BiasLearnRateFactor',0,'Bias',0)];

actorOpts = rlRepresentationOptions('LearnRate',1e-04,'GradientThreshold',1);

actor = rlRepresentation(actorNetwork,obsInfo,actInfo,'Observation',{'state'},'Action',{'action'},actorOpts);

To create the DDPG agent, first specify the DDPG agent options using
rlDDPGAgentOptions.

agentOpts = rlDDPGAgentOptions(...
 'SampleTime',env.Ts,...
 'TargetSmoothFactor',1e-3,...
 'ExperienceBufferLength',1e6,...
 'DiscountFactor',0.99,...
 'MiniBatchSize',32);
agentOpts.NoiseOptions.Variance = 0.3;
agentOpts.NoiseOptions.VarianceDecayRate = 1e-6;

Then, create the DDPG agent using the specified actor representation, critic
representation and agent options. For more information, see rlDDPGAgent.

agent = rlDDPGAgent(actor,critic,agentOpts);

Train Agent

To train the agent, first specify the training options. For this example, use the following
options:

• Run each training episode for at most 1000 episodes, with each episode lasting at
most 200 time steps.

• Display the training progress in the Episode Manager dialog box (set the Plots
option) and disable the command line display (set the Verbose option).

• Stop training when the agent receives an average cumulative reward greater than 195
over 10 consecutive episodes. At this point, the agent can balance the pendulum in the
upright position.

For more information, see rlTrainingOptions.

trainOpts = rlTrainingOptions(...
 'MaxEpisodes', 5000, ...

5 Train and Validate Agents

5-42

 'MaxStepsPerEpisode', 200, ...
 'Verbose', false, ...
 'Plots','training-progress',...
 'StopTrainingCriteria','AverageReward',...
 'StopTrainingValue',-66);

The double integrator system can be visualized with plot(env) during training or
simulation.

plot(env)

Train the agent using the train function. This is a computationally intensive process that
takes several hours to complete. To save time while running this example, load a
pretrained agent by setting doTraining to false. To train the agent yourself, set
doTraining to true.

doTraining = false;
if doTraining
 % Train the agent.
 trainingStats = train(agent,env,trainOpts);
else
 % Load pretrained agent for the example.
 load('DoubleIntegDDPG.mat','agent');
end

 Train DDPG Agent to Control Double Integrator System

5-43

Simulate DDPG Agent

To validate the performance of the trained agent, simulate it within the double integrator
environment. For more information on agent simulation, see rlSimulationOptions and
sim.

simOptions = rlSimulationOptions('MaxSteps',500);
experience = sim(env,agent,simOptions);

5 Train and Validate Agents

5-44

totalReward = sum(experience.Reward)

totalReward = single
 -65.9933

See Also
train

More About
• “Deep Deterministic Policy Gradient Agents” on page 4-15
• “Train Reinforcement Learning Agents” on page 5-2
• “Create Policy and Value Function Representations” on page 3-2

 See Also

5-45

Train DQN Agent to Swing Up and Balance Pendulum
This example shows how to train a deep Q-learning network (DQN) agent to swing up and
balance a pendulum modeled in Simulink®.

For more information on DQN agents, see “Deep Q-Network Agents” on page 4-11. For an
example that trains a DQN agent in MATLAB®, see “Train DQN Agent to Balance Cart-
Pole System” on page 5-10.

Pendulum Swing-up Model

The reinforcement learning environment for this example is a simple frictionless
pendulum that is initially hanging in a downward position. The training goal is to make
the pendulum stand upright without falling over using minimal control effort.

Open the model.

mdl = 'rlSimplePendulumModel';
open_system(mdl)

5 Train and Validate Agents

5-46

For this model:

• The upward balanced pendulum position is 0 radians, and the downward hanging
position is pi radians.

• The torque action signal from the agent to the environment is from -2 to 2 Nm.
• The observations from the environment are the sine of the pendulum angle, the cosine

of the pendulum angle, and the pendulum angle derivative.
• The reward rt, provided at every timestep, is:

rt = − θt
2 + 0 . 1θṫ

2 + 0 . 001ut − 1
2

where:

• θt is the angle of displacement from the upright position

 Train DQN Agent to Swing Up and Balance Pendulum

5-47

• θṫ is the derivative of the displacement angle
• ut − 1 is the control effort from the previous time step.

For more information on this model, see “Load Predefined Simulink Environments” on
page 2-33.

Create Environment Interface

Create a predefined environment interface for the pendulum.

env = rlPredefinedEnv('SimplePendulumModel-Discrete')

env =
 SimulinkEnvWithAgent with properties:

 Model: "rlSimplePendulumModel"
 AgentBlock: "rlSimplePendulumModel/RL Agent"
 ResetFcn: []
 UseFastRestart: 'on'

The interface has a discrete action space where the agent can apply one of three possible
torque values to the pendulum: -2, 0, or 2 Nm.

To define the initial condition of the pendulum as hanging downward, specify an
environment reset function using an anonymous function handle. This reset function sets
the model workspace variable theta0 to pi.

env.ResetFcn = @(in)setVariable(in,'theta0',pi,'Workspace',mdl);

Specify the simulation time Tf and the agent sample time Ts in seconds

Ts = 0.05;
Tf = 20;

Fix the random generator seed for reproducibility.

rng(0)

Create DQN agent

A DQN agent approximates the long-term reward given observations and actions using a
critic value function representation. To create the critic, first create a deep neural
network with two inputs, the state and action, and one output. The input size of the state

5 Train and Validate Agents

5-48

path is [3 1 1] since the environment provides 3 observations. For more information on
creating a deep neural network value function representation, see “Create Policy and
Value Function Representations” on page 3-2.

statePath = [
 imageInputLayer([3 1 1],'Normalization','none','Name','state')
 fullyConnectedLayer(24,'Name','CriticStateFC1')
 reluLayer('Name','CriticRelu1')
 fullyConnectedLayer(48,'Name','CriticStateFC2')];
actionPath = [
 imageInputLayer([1 1 1],'Normalization','none','Name','action')
 fullyConnectedLayer(48,'Name','CriticActionFC1','BiasLearnRateFactor',0)];
commonPath = [
 additionLayer(2,'Name','add')
 reluLayer('Name','CriticCommonRelu')
 fullyConnectedLayer(1,'Name','output')];
criticNetwork = layerGraph();
criticNetwork = addLayers(criticNetwork,statePath);
criticNetwork = addLayers(criticNetwork,actionPath);
criticNetwork = addLayers(criticNetwork,commonPath);
criticNetwork = connectLayers(criticNetwork,'CriticStateFC2','add/in1');
criticNetwork = connectLayers(criticNetwork,'CriticActionFC1','add/in2');

View the critic network configuration.

figure
plot(criticNetwork)

 Train DQN Agent to Swing Up and Balance Pendulum

5-49

Specify options for the critic representation using rlRepresentationOptions.

criticOptions = rlRepresentationOptions('LearnRate',0.01,'GradientThreshold',1);

Create the critic representation using the specified deep neural network and options. You
must also specify the action and observation info for the critic, which you obtain from the
environment interface. For more information, see rlRepresentation.

obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);
critic = rlRepresentation(criticNetwork,obsInfo,actInfo,...
 'Observation',{'state'},'Action',{'action'},criticOptions);

5 Train and Validate Agents

5-50

To create the DQN agent, first specify the DQN agent options using
rlDQNAgentOptions.

agentOptions = rlDQNAgentOptions(...
 'SampleTime',Ts,...
 'TargetSmoothFactor',1e-3,...
 'ExperienceBufferLength',3000,...
 'UseDoubleDQN',false,...
 'DiscountFactor',0.9,...
 'MiniBatchSize',64);

Then, create the DQN agent using the specified critic representation and agent options.
For more information, see rlDQNAgent.

agent = rlDQNAgent(critic,agentOptions);

Train Agent

To train the agent, first specify the training options. For this example, use the following
options:

• Run each training for at most 1000 episodes, with each episode lasting at most 500
time steps.

• Display the training progress in the Episode Manager dialog box (set the Plots
option) and disable the command line display (set the Verbose option).

• Stop training when the agent receives an average cumulative reward greater than
-1100 over five consecutive episodes. At this point, the agent can quickly balance the
pendulum in the upright position using minimal control effort.

• Save a copy of the agent for each episode where the cumulative reward is greater than
-1100.

For more information, see rlTrainingOptions.

trainingOptions = rlTrainingOptions(...
 'MaxEpisodes',1000,...
 'MaxStepsPerEpisode',500,...
 'ScoreAveragingWindowLength',5,...
 'Verbose',false,...
 'Plots','training-progress',...
 'StopTrainingCriteria','AverageReward',...
 'StopTrainingValue',-1100,...
 'SaveAgentCriteria','EpisodeReward',...
 'SaveAgentValue',-1100);

 Train DQN Agent to Swing Up and Balance Pendulum

5-51

Train the agent using the train function. This is a computationally intensive process that
takes several minutes to complete. To save time while running this example, load a
pretrained agent by setting doTraining to false. To train the agent yourself, set
doTraining to true.

doTraining = false;

if doTraining
 % Train the agent.
 trainingStats = train(agent,env,trainingOptions);
else
 % Load pretrained agent for the example.
 load('SimulinkPendulumDQN.mat','agent');
end

5 Train and Validate Agents

5-52

Simulate DQN Agent

To validate the performance of the trained agent, simulate it within the pendulum
environment. For more information on agent simulation, see rlSimulationOptions and
sim.

simOptions = rlSimulationOptions('MaxSteps',500);
experience = sim(env,agent,simOptions);

See Also
rlDQNAgent

 See Also

5-53

More About
• “Deep Q-Network Agents” on page 4-11
• “Create Simulink Environments for Reinforcement Learning” on page 2-6

5 Train and Validate Agents

5-54

Train DDPG Agent to Swing Up and Balance Pendulum
This example shows how to train a deep deterministic policy gradient (DDPG) agent to
swing up and balance a pendulum modeled in Simulink®.

For more information on DDPG agents, see “Deep Deterministic Policy Gradient Agents”
on page 4-15. For an example that trains a DDPG agent in MATLAB®, see “Train DDPG
Agent to Control Double Integrator System” on page 5-38.

Pendulum Swing-up Model

The reinforcement learning environment for this example is a simple frictionless
pendulum that is initially hanging in a downward position. The training goal is to make
the pendulum stand upright without falling over using minimal control effort.

Open the model.

mdl = 'rlSimplePendulumModel';
open_system(mdl)

 Train DDPG Agent to Swing Up and Balance Pendulum

5-55

For this model:

• The upward balanced pendulum position is 0 radians, and the downward hanging
position is pi radians.

• The torque action signal from the agent to the environment is from -2 to 2 Nm.
• The observations from the environment are the sine of the pendulum angle, the cosine

of the pendulum angle, and the pendulum angle derivative.
• The reward rt, provided at every time step, is:

rt = − θt
2 + 0 . 1θṫ

2 + 0 . 001ut − 1
2

where:

• θt is the angle of displacement from the upright position

5 Train and Validate Agents

5-56

• θṫ is the derivative of the displacement angle
• ut − 1 is the control effort from the previous time step.

For more information on this model, see “Load Predefined Simulink Environments” on
page 2-33.

Create Environment Interface

Create a predefined environment interface for the pendulum.

env = rlPredefinedEnv('SimplePendulumModel-Continuous')

env =
 SimulinkEnvWithAgent with properties:

 Model: "rlSimplePendulumModel"
 AgentBlock: "rlSimplePendulumModel/RL Agent"
 ResetFcn: []
 UseFastRestart: 'on'

The interface has a continuous action space where the agent can apply possible torque
values from -2 to 2 Nm to the pendulum.

Set the observations of the environment to be the sine of the pendulum angle, the cosine
of the pendulum angle, and the pendulum angle derivative.

numObs = 3;
set_param('rlSimplePendulumModel/create observations','ThetaObservationHandling','sincos');

To define the initial condition of the pendulum as hanging downward, specify an
environment reset function using an anonymous function handle. This reset function sets
the model workspace variable theta0 to pi.

env.ResetFcn = @(in)setVariable(in,'theta0',pi,'Workspace',mdl);

Specify the simulation time Tf and the agent sample time Ts in seconds

Ts = 0.05;
Tf = 20;

Fix the random generator seed for reproducibility.

rng(0)

 Train DDPG Agent to Swing Up and Balance Pendulum

5-57

Create DDPG agent

A DDPG agent approximates the long-term reward given observations and actions using a
critic value function representation. To create the critic, first create a deep neural
network with two inputs, the state and action, and one output. For more information on
creating a deep neural network value function representation, see “Create Policy and
Value Function Representations” on page 3-2.

statePath = [
 imageInputLayer([numObs 1 1],'Normalization','none','Name','observation')
 fullyConnectedLayer(400,'Name','CriticStateFC1')
 reluLayer('Name', 'CriticRelu1')
 fullyConnectedLayer(300,'Name','CriticStateFC2')];
actionPath = [
 imageInputLayer([1 1 1],'Normalization','none','Name','action')
 fullyConnectedLayer(300,'Name','CriticActionFC1','BiasLearnRateFactor',0)];
commonPath = [
 additionLayer(2,'Name','add')
 reluLayer('Name','CriticCommonRelu')
 fullyConnectedLayer(1,'Name','CriticOutput')];

criticNetwork = layerGraph();
criticNetwork = addLayers(criticNetwork,statePath);
criticNetwork = addLayers(criticNetwork,actionPath);
criticNetwork = addLayers(criticNetwork,commonPath);

criticNetwork = connectLayers(criticNetwork,'CriticStateFC2','add/in1');
criticNetwork = connectLayers(criticNetwork,'CriticActionFC1','add/in2');

View the critic network configuration.

figure
plot(criticNetwork)

5 Train and Validate Agents

5-58

Specify options for the critic representation using rlRepresentationOptions.

criticOpts = rlRepresentationOptions('LearnRate',1e-03,'GradientThreshold',1);

Create the critic representation using the specified deep neural network and options. You
must also specify the action and observation info for the critic, which you obtain from the
environment interface. For more information, see rlRepresentation.

obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);
critic = rlRepresentation(criticNetwork,obsInfo,actInfo,'Observation',{'observation'},'Action',{'action'},criticOpts);

 Train DDPG Agent to Swing Up and Balance Pendulum

5-59

A DDPG agent decides which action to take given observations using an actor
representation. To create the actor, first create a deep neural network with one input, the
observation, and one output, the action.

Construct the actor similarly to the critic.

actorNetwork = [
 imageInputLayer([numObs 1 1],'Normalization','none','Name','observation')
 fullyConnectedLayer(400,'Name','ActorFC1')
 reluLayer('Name','ActorRelu1')
 fullyConnectedLayer(300,'Name','ActorFC2')
 reluLayer('Name','ActorRelu2')
 fullyConnectedLayer(1,'Name','ActorFC3')
 tanhLayer('Name','ActorTanh')
 scalingLayer('Name','ActorScaling','Scale',max(actInfo.UpperLimit))];

actorOpts = rlRepresentationOptions('LearnRate',1e-04,'GradientThreshold',1);

actor = rlRepresentation(actorNetwork,obsInfo,actInfo,'Observation',{'observation'},'Action',{'ActorScaling'},actorOpts);

To create the DDPG agent, first specify the DDPG agent options using
rlDDPGAgentOptions.

agentOpts = rlDDPGAgentOptions(...
 'SampleTime',Ts,...
 'TargetSmoothFactor',1e-3,...
 'ExperienceBufferLength',1e6,...
 'DiscountFactor',0.99,...
 'MiniBatchSize',128);
agentOpts.NoiseOptions.Variance = 0.6;
agentOpts.NoiseOptions.VarianceDecayRate = 1e-5;

Then, create the DDPG agent using the specified actor representation, critic
representation and agent options. For more information, see rlDDPGAgent.

agent = rlDDPGAgent(actor,critic,agentOpts);

Train Agent

To train the agent, first specify the training options. For this example, use the following
options:

• Run training for at most 50000 episodes, with each episode lasting at most 400 time
steps.

5 Train and Validate Agents

5-60

• Display the training progress in the Episode Manager dialog box (set the Plots
option) and disable the command line display (set the Verbose option).

• Stop training when the agent receives an average cumulative reward greater than
-740 over five consecutive episodes. At this point, the agent can quickly balance the
pendulum in the upright position using minimal control effort.

• Save a copy of the agent for each episode where the cumulative reward is greater than
-740.

For more information, see rlTrainingOptions.

maxepisodes = 5000;
maxsteps = ceil(Tf/Ts);
trainOpts = rlTrainingOptions(...
 'MaxEpisodes',maxepisodes,...
 'MaxStepsPerEpisode',maxsteps,...
 'ScoreAveragingWindowLength',5,...
 'Verbose',false,...
 'Plots','training-progress',...
 'StopTrainingCriteria','AverageReward',...
 'StopTrainingValue',-740,...
 'SaveAgentCriteria','EpisodeReward',...
 'SaveAgentValue',-740);

Train the agent using the train function. Training this agent is a computationally
intensive process that takes several hours to complete. To save time while running this
example, load a pretrained agent by setting doTraining to false. To train the agent
yourself, set doTraining to true.

doTraining = false;
if doTraining
 % Train the agent.
 trainingStats = train(agent,env,trainOpts);
else
 % Load pretrained agent for the example.
 load('SimulinkPendulumDDPG.mat','agent')
end

 Train DDPG Agent to Swing Up and Balance Pendulum

5-61

Simulate DDPG Agent

To validate the performance of the trained agent, simulate it within the pendulum
environment. For more information on agent simulation, see rlSimulationOptions and
sim.

simOptions = rlSimulationOptions('MaxSteps',500);
experience = sim(env,agent,simOptions);

5 Train and Validate Agents

5-62

See Also
rlDDPGAgent | rlSimulinkEnv | train

More About
• “Create Simulink Environments for Reinforcement Learning” on page 2-6
• “Deep Deterministic Policy Gradient Agents” on page 4-15

 See Also

5-63

Train DDPG Agent to Swing Up and Balance Cart-Pole
System

This example shows how to train a deep deterministic policy gradient (DDPG) agent to
swing up and balance a cart-pole system modeled in Simscape™ Multibody™.

For more information on DDPG agents, see “Deep Deterministic Policy Gradient Agents”
on page 4-15. For an example that trains a DDPG agent in MATLAB®, see “Train DDPG
Agent to Control Double Integrator System” on page 5-38.

Cart-Pole Simscape Model

The reinforcement learning environment for this example is a pole attached to an
unactuated joint on a cart, which moves along a frictionless track. The training goal is to
make the pendulum stand upright without falling over using minimal control effort.

Open the model.

mdl = 'rlCartPoleSimscapeModel';
open_system(mdl)

The cart-pole system is modeled using Simscape Multibody.

5 Train and Validate Agents

5-64

For this model:

• The upward balanced pendulum position is 0 radians, and the downward hanging
position is pi radians

• The force action signal from the agent to the environment is from -15 to 15 N
• The observations from the environment are the position and velocity of the cart, and

the sine, cosine, and derivative of the pendulum angle
• The episode terminates if the cart moves more than 3.5 m from the original position
• The reward rt, provided at every timestep, is:

rt = − 0 . 1 5θt
2 + xt2 + 0 . 05ut − 1

2 − 100B

where:

• θt is the angle of displacement from the upright position of the pendulum
• xt is the position displacement from the center position of the cart
• ut − 1 is the control effort from the previous time step
• B is a flag (1 or 0) that indicates whether the cart is out of bounds

 Train DDPG Agent to Swing Up and Balance Cart-Pole System

5-65

For more information on this model, see “Load Predefined Simulink Environments” on
page 2-33.

Create Environment Interface

Create a predefined environment interface for the pendulum.

env = rlPredefinedEnv('CartPoleSimscapeModel-Continuous')

env =
 SimulinkEnvWithAgent with properties:

 Model: "rlCartPoleSimscapeModel"
 AgentBlock: "rlCartPoleSimscapeModel/RL Agent"
 ResetFcn: []
 UseFastRestart: 'on'

The interface has a continuous action space where the agent can apply possible torque
values from -15 to 15 N to the pendulum.

Obtain the observation and action information from the environment interface.

obsInfo = getObservationInfo(env);
numObservations = obsInfo.Dimension(1);
actInfo = getActionInfo(env);

Specify the simulation time Tf and the agent sample time Ts in seconds

Ts = 0.02;
Tf = 25;

Fix the random generator seed for reproducibility.

rng(0)

Create DDPG agent

A DDPG agent approximates the long-term reward given observations and actions using a
critic value function representation. To create the critic, first create a deep neural
network with two inputs (the state and action) and one output. The input size of action
path is [1 1 1] since the agent can apply action as one force value to the environment. For
more information on creating a deep neural network value function representation, see
“Create Policy and Value Function Representations” on page 3-2.

5 Train and Validate Agents

5-66

statePath = [
 imageInputLayer([numObservations 1 1],'Normalization','none','Name','observation')
 fullyConnectedLayer(128,'Name','CriticStateFC1')
 reluLayer('Name','CriticRelu1')
 fullyConnectedLayer(200,'Name','CriticStateFC2')];

actionPath = [
 imageInputLayer([1 1 1],'Normalization','none','Name','action')
 fullyConnectedLayer(200,'Name','CriticActionFC1','BiasLearnRateFactor',0)];

commonPath = [
 additionLayer(2,'Name','add')
 reluLayer('Name','CriticCommonRelu')
 fullyConnectedLayer(1,'Name','CriticOutput')];

criticNetwork = layerGraph(statePath);
criticNetwork = addLayers(criticNetwork,actionPath);
criticNetwork = addLayers(criticNetwork,commonPath);

criticNetwork = connectLayers(criticNetwork,'CriticStateFC2','add/in1');
criticNetwork = connectLayers(criticNetwork,'CriticActionFC1','add/in2');

View the critic network configuration.

figure
plot(criticNetwork)

 Train DDPG Agent to Swing Up and Balance Cart-Pole System

5-67

Specify options for the critic representation using rlRepresentationOptions.

criticOptions = rlRepresentationOptions('LearnRate',1e-03,'GradientThreshold',1);

Create the critic representation using the specified deep neural network and options. You
must also specify the action and observation information for the critic, which you already
obtained from the environment interface. For more information, see rlRepresentation.

critic = rlRepresentation(criticNetwork,obsInfo,actInfo,...
 'Observation',{'observation'},'Action',{'action'},criticOptions);

A DDPG agent decides which action to take given observations using an actor
representation. To create the actor, first create a deep neural network with one input (the
observation) and one output (the action).

5 Train and Validate Agents

5-68

Construct the actor in a similar manner to the critic.

actorNetwork = [
 imageInputLayer([numObservations 1 1],'Normalization','none','Name','observation')
 fullyConnectedLayer(128,'Name','ActorFC1')
 reluLayer('Name','ActorRelu1')
 fullyConnectedLayer(200,'Name','ActorFC2')
 reluLayer('Name','ActorRelu2')
 fullyConnectedLayer(1,'Name','ActorFC3')
 tanhLayer('Name','ActorTanh1')
 scalingLayer('Name','ActorScaling','Scale',max(actInfo.UpperLimit))];

actorOptions = rlRepresentationOptions('LearnRate',5e-04,'GradientThreshold',1);

actor = rlRepresentation(actorNetwork,obsInfo,actInfo,...
 'Observation',{'observation'},'Action',{'ActorScaling'},actorOptions);

To create the DDPG agent, first specify the DDPG agent options using
rlDDPGAgentOptions.

agentOptions = rlDDPGAgentOptions(...
 'SampleTime',Ts,...
 'TargetSmoothFactor',1e-3,...
 'ExperienceBufferLength',1e6,...
 'MiniBatchSize',128);
agentOptions.NoiseOptions.Variance = 0.4;
agentOptions.NoiseOptions.VarianceDecayRate = 1e-5;

Then, create the agent using the specified actor representation, critic representation and
agent options. For more information, see rlDDPGAgent.

agent = rlDDPGAgent(actor,critic,agentOptions);

Train Agent

To train the agent, first specify the training options. For this example, use the following
options:

• Run each training episode for at most 2000 episodes, with each episode lasting at
most 1250 time steps.

• Display the training progress in the Episode Manager dialog box (set the Plots
option) and disable the command line display (set the Verbose option).

 Train DDPG Agent to Swing Up and Balance Cart-Pole System

5-69

• Stop training when the agent receives an average cumulative reward greater than
-400 over five consecutive episodes. At this point, the agent can quickly balance the
pendulum in the upright position using minimal control effort.

• Save a copy of the agent for each episode where the cumulative reward is greater than
-400.

For more information, see rlTrainingOptions.

maxepisodes = 2000;
maxsteps = ceil(Tf/Ts);
trainingOptions = rlTrainingOptions(...
 'MaxEpisodes',maxepisodes,...
 'MaxStepsPerEpisode',maxsteps,...
 'ScoreAveragingWindowLength',5,...
 'Verbose',false,...
 'Plots','training-progress',...
 'StopTrainingCriteria','AverageReward',...
 'StopTrainingValue',-400,...
 'SaveAgentCriteria','EpisodeReward',...
 'SaveAgentValue',-400);

Train the agent using the train function. This process is computationally intensive and
takes several hours to complete. To save time while running this example, load a
pretrained agent by setting doTraining to false. To train the agent yourself, set
doTraining to true.

doTraining = false;

if doTraining
 % Train the agent.
 trainingStats = train(agent,env,trainingOptions);
else
 % Load pretrained agent for the example.
 load('SimscapeCartPoleDDPG.mat','agent')
end

5 Train and Validate Agents

5-70

Simulate DDPG Agent

To validate the performance of the trained agent, simulate it within the cart-pole
environment. For more information on agent simulation, see rlSimulationOptions and
sim.

simOptions = rlSimulationOptions('MaxSteps',500);
experience = sim(env,agent,simOptions);

 Train DDPG Agent to Swing Up and Balance Cart-Pole System

5-71

bdclose(mdl)

See Also
rlDDPGAgent | rlSimulinkEnv | train

More About
• “Create Simulink Environments for Reinforcement Learning” on page 2-6
• “Deep Deterministic Policy Gradient Agents” on page 4-15

5 Train and Validate Agents

5-72

Train DDPG Agent to Swing Up and Balance Pendulum
with Bus Signal

Starting with a simple frictionless pendulum Simulink® model, this example shows how
to convert it to a reinforcement learning environment interface and trains a deep
deterministic policy gradient (DDPG) agent in this environment.

For more information on DDPG agents, see “Deep Deterministic Policy Gradient Agents”
on page 4-15. For an example that trains a DDPG agent in MATLAB®, see “Train DDPG
Agent to Control Double Integrator System” on page 5-38.

Pendulum Swing-Up Model with Bus

The starting model for this example is a simple frictionless pendulum. The training goal is
to make the pendulum stand upright without falling over using minimal control effort.

Fix the random generator seed for reproducibility.

rng(0)

Open the model.

mdl = 'rlSimplePendulumModelBus';
open_system(mdl)

 Train DDPG Agent to Swing Up and Balance Pendulum with Bus Signal

5-73

For this model:

• The upward balanced pendulum position is 0 radians, and the downward hanging
position is pi radians.

• The torque action signal from the agent to the environment is from -2 to 2 Nm.
• The observations from the environment are the sine of the pendulum angle, the cosine

of the pendulum angle, and the pendulum angle derivative.
• Both the observation and action signals are Simulink buses.
• The reward rt, provided at every time step, is:

rt = − θt
2 + 0 . 1θṫ

2 + 0 . 001ut − 1
2

where:

5 Train and Validate Agents

5-74

• θt is the angle of displacement from the upright position

• θṫ is the derivative of the displacement angle

• ut − 1 is the control effort from the previous time step.

The model used in this example is similar to the simple pendulum model described in
“Load Predefined Simulink Environments” on page 2-33. The difference is that the model
in this example uses Simulink buses for the action and observation signals.

Create Environment Interface with Bus

The environment interface from a Simulink model is created using rlSimulinkEnv,
which requires the name of the Simulink model, the path the agent block, and observation
and action reinforcement learning data specifications. For models that use bus signals for
actions or observations, you can create the corresponding specifications using the
bus2RLSpec function.

Specify the path to the agent block.

agentBlk = 'rlSimplePendulumModelBus/RL Agent';

Create the observation Bus object.

obsBus = Simulink.Bus();
obs(1) = Simulink.BusElement;
obs(1).Name = 'sin_theta';
obs(2) = Simulink.BusElement;
obs(2).Name = 'cos_theta';
obs(3) = Simulink.BusElement;
obs(3).Name = 'dtheta';
obsBus.Elements = obs;

Create the action Bus object.

actBus = Simulink.Bus();
act(1) = Simulink.BusElement;
act(1).Name = 'tau';
act(1).Min = -2;
act(1).Max = 2;
actBus.Elements = act;

Create the action and observation specification objects using the Simulink buses.

 Train DDPG Agent to Swing Up and Balance Pendulum with Bus Signal

5-75

obsInfo = bus2RLSpec('obsBus','Model',mdl);
actInfo = bus2RLSpec('actBus','Model',mdl);

Create the reinforcement learning environment for the pendulum model.

env = rlSimulinkEnv(mdl,agentBlk,obsInfo,actInfo);

To define the initial condition of the pendulum as hanging downward, specify an
environment reset function using an anonymous function handle. This reset function sets
the model workspace variable theta0 to pi.

env.ResetFcn = @(in)setVariable(in,'theta0',pi,'Workspace',mdl);

Specify the simulation time Tf and the agent sample time Ts in seconds

Ts = 0.05;
Tf = 20;

Create DDPG agent

A DDPG agent decides which action to take given observations using an actor
representation. To create the actor, first create a deep neural network with three inputs,
the three observations, and one output, the action. The three observations can be
combined using a concatenationLayer.

For more information on creating a deep neural network value function representation,
see “Create Policy and Value Function Representations” on page 3-2.

sinThetaInput = imageInputLayer([1 1 1],'Normalization','none','Name','sin_theta');
cosThetaInput = imageInputLayer([1 1 1],'Normalization','none','Name','cos_theta');
dThetaInput = imageInputLayer([1 1 1],'Normalization','none','Name','dtheta');
commonPath = [
 concatenationLayer(1,3,'Name','concat')
 fullyConnectedLayer(400, 'Name','ActorFC1')
 reluLayer('Name','ActorRelu1')
 fullyConnectedLayer(300,'Name','ActorFC2')
 reluLayer('Name','ActorRelu2')
 fullyConnectedLayer(1,'Name','ActorFC3')
 tanhLayer('Name','ActorTanh1')
 scalingLayer('Name','ActorScaling1','Scale',max(actInfo.UpperLimit))];

actorNetwork = layerGraph(sinThetaInput);
actorNetwork = addLayers(actorNetwork,cosThetaInput);
actorNetwork = addLayers(actorNetwork,dThetaInput);
actorNetwork = addLayers(actorNetwork,commonPath);

5 Train and Validate Agents

5-76

actorNetwork = connectLayers(actorNetwork,'sin_theta','concat/in1');
actorNetwork = connectLayers(actorNetwork,'cos_theta','concat/in2');
actorNetwork = connectLayers(actorNetwork,'dtheta','concat/in3');

View the actor network configuration.

figure
plot(actorNetwork)

Specify options for the critic representation using rlRepresentationOptions.

actorOptions = rlRepresentationOptions('LearnRate',1e-4,'GradientThreshold',1);

 Train DDPG Agent to Swing Up and Balance Pendulum with Bus Signal

5-77

Create the critic representation using the specified deep neural network and options. You
must also specify the action and observation info for the critic, which you obtain from the
environment interface. For more information, see rlRepresentation.

actor = rlRepresentation(actorNetwork,obsInfo,actInfo,...
 'Observation',{'sin_theta','cos_theta','dtheta'},'Action',{'ActorScaling1'},actorOptions);

A DDPG agent approximates the long-term reward given observations and actions using a
critic value function representation. To create the critic, first create a deep neural
network with two inputs, the observation and action, and one output, the state action
value.

Construct the critic similarly to the actor.

statePath = [
 concatenationLayer(1,3,'Name','concat')
 fullyConnectedLayer(400,'Name','CriticStateFC1')
 reluLayer('Name','CriticRelu1')
 fullyConnectedLayer(300,'Name','CriticStateFC2')];

actionPath = [
 imageInputLayer([1 1 1],'Normalization','none','Name', 'action')
 fullyConnectedLayer(300,'Name','CriticActionFC1','BiasLearnRateFactor', 0)];

commonPath = [
 additionLayer(2,'Name','add')
 reluLayer('Name','CriticCommonRelu')
 fullyConnectedLayer(1,'Name','CriticOutput')];

criticNetwork = layerGraph(sinThetaInput);
criticNetwork = addLayers(criticNetwork,cosThetaInput);
criticNetwork = addLayers(criticNetwork,dThetaInput);
criticNetwork = addLayers(criticNetwork,actionPath);
criticNetwork = addLayers(criticNetwork,statePath);
criticNetwork = addLayers(criticNetwork,commonPath);

criticNetwork = connectLayers(criticNetwork,'sin_theta','concat/in1');
criticNetwork = connectLayers(criticNetwork,'cos_theta','concat/in2');
criticNetwork = connectLayers(criticNetwork,'dtheta','concat/in3');
criticNetwork = connectLayers(criticNetwork,'CriticStateFC2','add/in1');
criticNetwork = connectLayers(criticNetwork,'CriticActionFC1','add/in2');

criticOpts = rlRepresentationOptions('LearnRate',1e-03,'GradientThreshold',1);

5 Train and Validate Agents

5-78

critic = rlRepresentation(criticNetwork,obsInfo,actInfo,...
 'Observation',{'sin_theta','cos_theta','dtheta'},'Action',{'action'},criticOpts);

To create the DDPG agent, first specify the DDPG agent options using
rlDDPGAgentOptions.

agentOpts = rlDDPGAgentOptions(...
 'SampleTime',Ts,...
 'TargetSmoothFactor',1e-3,...
 'ExperienceBufferLength',1e6,...
 'DiscountFactor',0.99,...
 'MiniBatchSize',128);
agentOpts.NoiseOptions.Variance = 0.6;
agentOpts.NoiseOptions.VarianceDecayRate = 1e-5;

Then, create the DDPG agent using the specified actor representation, critic
representation and agent options. For more information, see rlDDPGAgent.

agent = rlDDPGAgent(actor,critic,agentOpts);

Train Agent

To train the agent, first specify the training options. For this example, use the following
options:

• Run each training for at most 50000 episodes, with each episode lasting at most 400
time steps.

• Display the training progress in the Episode Manager dialog box (set the Plots
option) and disable the command line display (set the Verbose option).

• Stop training when the agent receives an average cumulative reward greater than
-740 over five consecutive episodes. At this point, the agent can quickly balance the
pendulum in the upright position using minimal control effort.

• Save a copy of the agent for each episode where the cumulative reward is greater than
-740.

For more information, see rlTrainingOptions.

maxepisodes = 5000;
maxsteps = ceil(Tf/Ts);
trainOpts = rlTrainingOptions(...
 'MaxEpisodes',maxepisodes,...
 'MaxStepsPerEpisode',maxsteps,...
 'ScoreAveragingWindowLength',5,...

 Train DDPG Agent to Swing Up and Balance Pendulum with Bus Signal

5-79

 'Verbose',false,...
 'Plots','training-progress',...
 'StopTrainingCriteria','AverageReward',...
 'StopTrainingValue',-740);

Train the agent using the train function. This is a computationally intensive process that
takes several hours to complete. To save time while running this example, load a
pretrained agent by setting doTraining to false. To train the agent yourself, set
doTraining to true.

doTraining = false;
if doTraining
 % Train the agent.
 trainingStats = train(agent,env,trainOpts);
else
 % Load pretrained agent for the example.
 load('SimulinkPendBusDDPG.mat','agent')
end

5 Train and Validate Agents

5-80

Simulate DDPG Agent

To validate the performance of the trained agent, simulate it within the pendulum
environment. For more information on agent simulation, see rlSimulationOptions and
sim.

simOptions = rlSimulationOptions('MaxSteps',500);
experience = sim(env,agent,simOptions);

 Train DDPG Agent to Swing Up and Balance Pendulum with Bus Signal

5-81

See Also
bus2RLSpec | rlDDPGAgent | rlSimulinkEnv | train

More About
• “Create Simulink Environments for Reinforcement Learning” on page 2-6
• “Deep Deterministic Policy Gradient Agents” on page 4-15

5 Train and Validate Agents

5-82

Train DDPG Agent to Swing Up and Balance Pendulum
with Image Observation

This example shows how to train a deep deterministic policy gradient (DDPG) agent to
swing up and balance a pendulum with an image observation modeled in MATLAB®.

For more information on DDPG agents, see “Deep Deterministic Policy Gradient Agents”
on page 4-15.

Simple Pendulum with Image MATLAB Environment

The reinforcement learning environment for this example is a simple frictionless
pendulum that is initially hanging in a downward position. The training goal is to make
the pendulum stand upright without falling over using minimal control effort.

For this environment:

• The upward balanced pendulum position is 0 radians, and the downward hanging
position is pi radians

• The torque action signal from the agent to the environment is from -2 to 2 Nm
• The observations from the environment are an image indicating the location of the

pendulum's mass and the pendulum angular velocity.
• The reward rt, provided at every time step, is:

rt = − θt
2 + 0 . 1θṫ

2 + 0 . 001ut − 1
2

where:

• θt is the angle of displacement from the upright position
• θṫ is the derivative of the displacement angle
• ut − 1 is the control effort from the previous time step

For more information on this model, see “Load Predefined Control System Environments”
on page 2-24.

Create Environment Interface

Create a predefined environment interface for the pendulum.

 Train DDPG Agent to Swing Up and Balance Pendulum with Image Observation

5-83

env = rlPredefinedEnv('SimplePendulumWithImage-Continuous')

env =
 SimplePendlumWithImageContinuousAction with properties:

 Mass: 1
 RodLength: 1
 RodInertia: 0
 Gravity: 9.8100
 DampingRatio: 0
 MaximumTorque: 2
 Ts: 0.0500
 State: [2x1 double]
 Q: [2x2 double]
 R: 1.0000e-03

The interface has a continuous action space where the agent can apply a torque between
-2 to 2 Nm.

Obtain the observation and action specification from the environment interface.

obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

Fix the random generator seed for reproducibility.

rng(0)

Create DDPG Agent

A DDPG agent approximates the long-term reward given observations and actions using a
critic value function representation. To create the critic, first create a deep convolutional
neural network (CNN) with three inputs (the image, angular velocity, and action) and one
output. For more information on creating representations, see “Create Policy and Value
Function Representations” on page 3-2.

hiddenLayerSize1 = 400;
hiddenLayerSize2 = 300;

imgPath = [
 imageInputLayer(obsInfo(1).Dimension,'Normalization','none','Name',obsInfo(1).Name)
 convolution2dLayer(10,2,'Name','conv1','Stride',5,'Padding',0)
 reluLayer('Name','relu1')
 fullyConnectedLayer(2,'Name','fc1')

5 Train and Validate Agents

5-84

 concatenationLayer(3,2,'Name','cat1')
 fullyConnectedLayer(hiddenLayerSize1,'Name','fc2')
 reluLayer('Name','relu2')
 fullyConnectedLayer(hiddenLayerSize2,'Name','fc3')
 additionLayer(2,'Name','add')
 reluLayer('Name','relu3')
 fullyConnectedLayer(1,'Name','fc4')
];
dthetaPath = [
 imageInputLayer(obsInfo(2).Dimension,'Normalization','none','Name',obsInfo(2).Name)
 fullyConnectedLayer(1,'Name','fc5','BiasLearnRateFactor',0,'Bias',0)
];
actPath =[
 imageInputLayer(actInfo(1).Dimension,'Normalization','none','Name','action')
 fullyConnectedLayer(hiddenLayerSize2,'Name','fc6','BiasLearnRateFactor',0,'Bias',zeros(hiddenLayerSize2,1))
];

criticNetwork = layerGraph(imgPath);
criticNetwork = addLayers(criticNetwork,dthetaPath);
criticNetwork = addLayers(criticNetwork,actPath);
criticNetwork = connectLayers(criticNetwork,'fc5','cat1/in2');
criticNetwork = connectLayers(criticNetwork,'fc6','add/in2');

View the critic network configuration.

figure
plot(criticNetwork)

 Train DDPG Agent to Swing Up and Balance Pendulum with Image Observation

5-85

Specify options for the critic representation using rlRepresentationOptions.

criticOptions = rlRepresentationOptions('LearnRate',1e-03,'GradientThreshold',1);

Uncomment the following line to use the GPU to accelerate training of the CNN.

% criticOptions.UseDevice = 'gpu';

Create the critic representation using the specified neural network and options. You must
also specify the action and observation info for the critic, which you obtain from the
environment interface. For more information, see rlRepresentation.

critic = rlRepresentation(criticNetwork,obsInfo,actInfo,...
 'Observation',{'pendImage','angularRate'},'Action',{'action'},criticOptions);

5 Train and Validate Agents

5-86

A DDPG agent decides which action to take given observations using an actor
representation. To create the actor, first create a deep convolutional neural network
(CNN) with two inputs (the image and angular velocity) and one output (the action).

Construct the actor in a similar manner to the critic.

imgPath = [
 imageInputLayer(obsInfo(1).Dimension,'Normalization','none','Name',obsInfo(1).Name)
 convolution2dLayer(10,2,'Name','conv1','Stride',5,'Padding',0)
 reluLayer('Name','relu1')
 fullyConnectedLayer(2,'Name','fc1')
 concatenationLayer(3,2,'Name','cat1')
 fullyConnectedLayer(hiddenLayerSize1,'Name','fc2')
 reluLayer('Name','relu2')
 fullyConnectedLayer(hiddenLayerSize2,'Name','fc3')
 reluLayer('Name','relu3')
 fullyConnectedLayer(1,'Name','fc4')
 tanhLayer('Name','tanh1')
 scalingLayer('Name','scale1','Scale',max(actInfo.UpperLimit))
];
dthetaPath = [
 imageInputLayer(obsInfo(2).Dimension,'Normalization','none','Name',obsInfo(2).Name)
 fullyConnectedLayer(1,'Name','fc5','BiasLearnRateFactor',0,'Bias',0)
];

actorNetwork = layerGraph(imgPath);
actorNetwork = addLayers(actorNetwork,dthetaPath);
actorNetwork = connectLayers(actorNetwork,'fc5','cat1/in2');

actorOptions = rlRepresentationOptions('LearnRate',1e-04,'GradientThreshold',1);

Uncomment the following line to use the GPU to accelerate training of the CNN.

% criticOptions.UseDevice = 'gpu';

Create the actor representation using the specified neural network and options.

actor = rlRepresentation(actorNetwork,obsInfo,actInfo,'Observation',{'pendImage','angularRate'},'Action',{'scale1'},actorOptions);

View the actor network configuration.

figure
plot(actorNetwork)

 Train DDPG Agent to Swing Up and Balance Pendulum with Image Observation

5-87

To create the DDPG agent, first specify the DDPG agent options using
rlDDPGAgentOptions.

agentOptions = rlDDPGAgentOptions(...
 'SampleTime',env.Ts,...
 'TargetSmoothFactor',1e-3,...
 'ExperienceBufferLength',1e6,...
 'DiscountFactor',0.99,...
 'MiniBatchSize',128);
agentOptions.NoiseOptions.Variance = 0.6;
agentOptions.NoiseOptions.VarianceDecayRate = 1e-6;

Then, create the agent using the specified actor representation, critic representation, and
agent options. For more information, see rlDDPGAgent.

5 Train and Validate Agents

5-88

agent = rlDDPGAgent(actor,critic,agentOptions);

Train Agent

To train the agent, first specify the training options. For this example, use the following
options:

• Run each training for at most 5000 episodes, with each episode lasting at most 500
time steps.

• Display the training progress at the command line (set the Verbose option) and in the
Episode Manager dialog box (set the Plots option).

• Stop training when the agent receives an average cumulative reward greater than
-1000 over five consecutive episodes. At this point, the agent can quickly balance the
pendulum in the upright position using minimal control effort.

For more information, see rlTrainingOptions.

maxepisodes = 5000;
maxsteps = 400;
trainingOptions = rlTrainingOptions(...
 'MaxEpisodes',maxepisodes,...
 'MaxStepsPerEpisode',maxsteps,...
 'Plots','training-progress',...
 'StopTrainingCriteria','AverageReward',...
 'StopTrainingValue',-740);

The pendulum system can be visualized with plot during training or simulation.

plot(env)

 Train DDPG Agent to Swing Up and Balance Pendulum with Image Observation

5-89

Train the agent using the train function. This is a computationally intensive process that
takes several hours to complete. To save time while running this example, load a
pretrained agent by setting doTraining to false. To train the agent yourself, set
doTraining to true.

doTraining = false;
if doTraining
 % Train the agent.
 trainingStats = train(agent,env,trainingOptions);
else
 % Load pretrained agent for the example.

5 Train and Validate Agents

5-90

 load('SimplePendulumWithImageDDPG.mat','agent')
end

Simulate DDPG Agent

To validate the performance of the trained agent, simulate it within the pendulum
environment. For more information on agent simulation, see rlSimulationOptions and
sim.

simOptions = rlSimulationOptions('MaxSteps',500);
experience = sim(env,agent,simOptions);

 Train DDPG Agent to Swing Up and Balance Pendulum with Image Observation

5-91

See Also
train

More About
• “Deep Deterministic Policy Gradient Agents” on page 4-15
• “Train Reinforcement Learning Agents” on page 5-2
• “Create Policy and Value Function Representations” on page 3-2

5 Train and Validate Agents

5-92

Create Agent Using Deep Network Designer and Train
Using Image Observations

This example shows how to create a deep Q-learning network (DQN) agent using the
Deep Network Designer app to swing up and balance a pendulum modeled in MATLAB®.
For more information on DQN agents, see “Deep Q-Network Agents” on page 4-11.

Pendulum Swing Up with image MATLAB Environment

The reinforcement learning environment for this example is a simple frictionless
pendulum that is initially hanging in a downward position. The training goal is to make
the pendulum stand upright without falling over using minimal control effort.

 Create Agent Using Deep Network Designer and Train Using Image Observations

5-93

For this environment:

• The upward balanced pendulum position is 0 radians, and the downward hanging
position is pi radians.

• The torque action signal from the agent to the environment is from -2 to 2 Nm.
• The observations from the environment are the simplified grayscale image of the

pendulum and the pendulum angle derivative.
• The reward rt, provided at every time step, is:

5 Train and Validate Agents

5-94

rt = − θt
2 + 0 . 1θṫ

2 + 0 . 001ut − 1
2

where:

• θt is the angle of displacement from the upright position
• θṫ is the derivative of the displacement angle
• ut − 1 is the control effort from the previous time step.

For more information on this model, see “Train DDPG Agent to Swing Up and Balance
Pendulum with Image Observation” on page 5-83.

Create Environment Interface

Create a predefined environment interface for the pendulum.

env = rlPredefinedEnv('SimplePendulumWithImage-Discrete');

The interface has two observations. The first observation, named "pendImage", is a
50x50 grayscale image.

obsInfo = getObservationInfo(env);
obsInfo(1)

ans =
 rlNumericSpec with properties:

 LowerLimit: 0
 UpperLimit: 1
 Name: "pendImage"
 Description: [0x0 string]
 Dimension: [50 50 1]
 DataType: "double"

The second observation, named "angularRate", is the angular velocity of the pendulum.

obsInfo(2)

ans =
 rlNumericSpec with properties:

 LowerLimit: -Inf
 UpperLimit: Inf

 Create Agent Using Deep Network Designer and Train Using Image Observations

5-95

 Name: "angularRate"
 Description: [0x0 string]
 Dimension: [1 1]
 DataType: "double"

The interface has a discrete action space where the agent can apply one of five possible
torque values to the pendulum: -2, -1, 0, 1, or 2 Nm.

actInfo = getActionInfo(env)

actInfo =
 rlFiniteSetSpec with properties:

 Elements: [-2 -1 0 1 2]
 Name: "torque"
 Description: [0x0 string]
 Dimension: [1 1]
 DataType: "double"

Fix the random generator seed for reproducibility.

rng(0)

Construct Critic Network Using Deep Network Designer

A DQN agent approximates the long-term reward given observations and actions using a
critic value function representation. For this environment, the critic is a deep neural
network with three inputs, the two observations and action, and one output. For more
information on creating a deep neural network value function representation, see “Create
Policy and Value Function Representations” on page 3-2.

You can interactively construct the critic network using the Deep Network Designer app.
To do so, you first create separate input paths for each observation and action. These
paths learn lower-level features from their respective inputs. You then create a common
output path which combines the outputs from the input paths.

Create Image Observation Path

To create the image observation path, first drag an ImageInputLayer from the Layer
Library pane to the canvas. Set the layer InputSize to 50,50,1 for the image
observation, and set Normalization to none.

5 Train and Validate Agents

5-96

Second, drag a Convolution2DLayer to the canvas and connect the input of this layer
to the output of the ImageInputLayer. Create a convolution layer with 2 filters
(NumFilters property) that have a height and width of 10 (FilterSize property), and use
a stride of 5 in the horizontal and vertical directions (Stride property).

 Create Agent Using Deep Network Designer and Train Using Image Observations

5-97

Finally, complete the image path network with two sets of ReLULayer and
FullyConnectedLayer. The OutputSize of the two FullyConnectedLayer layers are
400 and 300, respectively.

5 Train and Validate Agents

5-98

Create All Input Paths and Output Path

Construct the other input paths and output path in similar fashion. For this example, use
the following options:

Angular Velocity Path (scalar input):

• ImageInputLayer: InputSize = 1,1 and Normalization = none
• FullyConnectedLayer: OutputSize = 400
• ReLULayer
• FullyConnectedLayer: OutputSize = 300

Action Path (scalar input):

 Create Agent Using Deep Network Designer and Train Using Image Observations

5-99

• ImageInputLayer: InputSize = 1,1 and Normalization = none
• FullyConnectedLayer: OutputSize = 300

Output Path:

• AdditionLayer: Connect the output of all input paths to the input of this layer.
• ReLULayer
• FullyConnectedLayer: OutputSize = 1 for the scalar value function.

5 Train and Validate Agents

5-100

 Create Agent Using Deep Network Designer and Train Using Image Observations

5-101

Export Network from Deep Network Designer

To export the network to the MATLAB workspace, in the Deep Network Designer, click
Export. The Deep Network Designer exports the network to a new variable containing
the network layers. You can create the critic representation using this layer network
variable.

Alternatively, to generate equivalent MATLAB code for the network, click Export >
Generate Code.

The generated code is:

lgraph = layerGraph();
layers = [
 imageInputLayer([1 1 1],"Name","torque","Normalization","none")
 fullyConnectedLayer(300,"Name","torque_fc1")];
lgraph = addLayers(lgraph,layers);
layers = [
 imageInputLayer([1 1 1],"Name","angularRate","Normalization","none")
 fullyConnectedLayer(400,"Name","dtheta_fc1")
 reluLayer("Name","dtheta_relu1")
 fullyConnectedLayer(300,"Name","dtheta_fc2")];
lgraph = addLayers(lgraph,layers);
layers = [
 imageInputLayer([50 50 1],"Name","pendImage","Normalization","none")
 convolution2dLayer([10 10],2,"Name","img_conv1","Stride",[5 5])
 reluLayer("Name","img_relu")
 fullyConnectedLayer(400,"Name","theta_fc1")
 reluLayer("Name","theta_relu1")

5 Train and Validate Agents

5-102

 fullyConnectedLayer(300,"Name","theta_fc2")];
lgraph = addLayers(lgraph,layers);
layers = [
 additionLayer(3,"Name","addition")
 reluLayer("Name","relu")
 fullyConnectedLayer(1,"Name","stateValue")];
lgraph = addLayers(lgraph,layers);
lgraph = connectLayers(lgraph,"torque_fc1","addition/in3");
lgraph = connectLayers(lgraph,"theta_fc2","addition/in1");
lgraph = connectLayers(lgraph,"dtheta_fc2","addition/in2");

View the critic network configuration.

figure
plot(lgraph)

 Create Agent Using Deep Network Designer and Train Using Image Observations

5-103

Specify options for the critic representation using rlRepresentationOptions.

criticOpts = rlRepresentationOptions('LearnRate',1e-03,'GradientThreshold',1);

Create the critic representation using the specified deep neural network lgraph and
options. You must also specify the action and observation info for the critic, which you
obtain from the environment interface. For more information, see rlRepresentation.

critic = rlRepresentation(lgraph,obsInfo,actInfo,...
 'Observation',{'pendImage','angularRate'},'Action',{'torque'},criticOpts);

To create the DQN agent, first specify the DQN agent options using
rlDQNAgentOptions.

5 Train and Validate Agents

5-104

agentOpts = rlDQNAgentOptions(...
 'UseDoubleDQN',false,...
 'TargetUpdateMethod',"smoothing",...
 'TargetSmoothFactor',1e-3,...
 'ExperienceBufferLength',1e6,...
 'DiscountFactor',0.99,...
 'SampleTime',env.Ts,...
 'MiniBatchSize',64);
agentOpts.EpsilonGreedyExploration.EpsilonDecay = 1e-5;

Then, create the DQN agent using the specified critic representation and agent options.
For more information, see rlDQNAgent.

agent = rlDQNAgent(critic,agentOpts);

Train Agent

To train the agent, first specify the training options. For this example, use the following
options:

• Run each training for at most 1000 episodes, with each episode lasting at most 500
time steps.

• Display the training progress in the Episode Manager dialog box (set the Plots
option) and disable the command line display (set the Verbose option).

• Stop training when the agent receives an average cumulative reward greater than
-1000 over five consecutive episodes. At this point, the agent can quickly balance the
pendulum in the upright position using minimal control effort.

For more information, see rlTrainingOptions.

trainOpts = rlTrainingOptions(...
 'MaxEpisodes',5000,...
 'MaxStepsPerEpisode',500,...
 'Verbose',false,...
 'Plots','training-progress',...
 'StopTrainingCriteria','AverageReward',...
 'StopTrainingValue',-1000);

The pendulum system can be visualized with plot(env) during training or simulation.

plot(env)

 Create Agent Using Deep Network Designer and Train Using Image Observations

5-105

Train the agent using the train function. This is a computationally intensive process that
takes several hours to complete. To save time while running this example, load a
pretrained agent by setting doTraining to false. To train the agent yourself, set
doTraining to true.

doTraining = false;

if doTraining
 % Train the agent.
 trainingStats = train(agent,env,trainOpts);
else

5 Train and Validate Agents

5-106

 % Load pretrained agent for the example.
 load('MATLABPendImageDQN.mat','agent');
end

Simulate DQN Agent

To validate the performance of the trained agent, simulate it within the pendulum
environment. For more information on agent simulation, see rlSimulationOptions and
sim.

simOptions = rlSimulationOptions('MaxSteps',500);
experience = sim(env,agent,simOptions);

 Create Agent Using Deep Network Designer and Train Using Image Observations

5-107

totalReward = sum(experience.Reward)

totalReward = -888.9802

See Also
Deep Network Designer | rlDQNAgent

5 Train and Validate Agents

5-108

More About
• “Train DQN Agent to Swing Up and Balance Pendulum” on page 5-46

 See Also

5-109

Train AC Agent to Balance Cart-pole System Using
Parallel Computing

This example extends the example “Train AC Agent to Balance Cart-Pole System” on page
5-24 to demonstrate asynchronous parallel training of an Actor-Critic (AC) agent [1] to
balance a cart-pole system modeled in MATLAB®.

Actor Parallel Training

When using parallel computing with AC agents, each worker generates experiences from
its copy of the agent and the environment. After every N steps, the worker computes
gradients from the experiences and sends the computed gradients back to the host agent.
The host agent updates its parameters as follows:

• For asynchronous training, the host agent applies the received gradients and sends
the updated parameters back to the worker that provided the gradients. Then, the
worker continues to generate experiences from its environment using the updated
parameters.

• For synchronous training, the host agent waits to receive gradients from all of the
workers and updates its parameters using these gradients. The host then sends
updated parameters to all the workers at the same time. Then, all workers continue to
generate experiences using the updated parameters.

Create Cart-pole MATLAB Environment Interface

Create a predefined environment interface for the cart-pole system. For more information
on this environment, see “Load Predefined Control System Environments” on page 2-24.

env = rlPredefinedEnv("CartPole-Discrete");
env.PenaltyForFalling = -10;

Obtain the observation and action information from the environment interface.

obsInfo = getObservationInfo(env);
numObservations = obsInfo.Dimension(1);
actInfo = getActionInfo(env);

Fix the random generator seed for reproducibility.

rng(0)

5 Train and Validate Agents

5-110

Create AC agent

An AC agent approximates the long-term reward given observations and actions using a
critic value function representation. To create the critic, first create a deep neural
network with one input (the observation) and one output (the state value). The input size
of the critic network is [4 1 1] since the environment provides 4 observations. For more
information on creating a deep neural network value function representation, see “Create
Policy and Value Function Representations” on page 3-2.

criticNetwork = [
 imageInputLayer([4 1 1],'Normalization','none','Name','state')
 fullyConnectedLayer(32,'Name','CriticStateFC1')
 reluLayer('Name','CriticRelu1')
 fullyConnectedLayer(1, 'Name', 'CriticFC')];

criticOpts = rlRepresentationOptions('LearnRate',1e-2,'GradientThreshold',1);

critic = rlRepresentation(criticNetwork,obsInfo,'Observation',{'state'},criticOpts);

An AC agent decides which action to take given observations using an actor
representation. To create the actor, create a deep neural network with one input (the
observation) and one output (the action). The output size of the actor network is 2 since
the agent can apply 2 force values to the environment, -10 and 10.

actorNetwork = [
 imageInputLayer([4 1 1],'Normalization','none','Name','state')
 fullyConnectedLayer(32, 'Name','ActorStateFC1')
 reluLayer('Name','ActorRelu1')
 fullyConnectedLayer(2,'Name','action')];

actorOpts = rlRepresentationOptions('LearnRate',1e-2,'GradientThreshold',1);

actor = rlRepresentation(actorNetwork,obsInfo,actInfo,...
 'Observation',{'state'},'Action',{'action'},actorOpts);

To create the AC agent, first specify the AC agent options using rlACAgentOptions.

agentOpts = rlACAgentOptions(...
 'NumStepsToLookAhead',32,...
 'EntropyLossWeight',0.01,...
 'DiscountFactor',0.99);

Then, create the agent using the specified actor representation, and the agent options.
For more information, see rlACAgent.

 Train AC Agent to Balance Cart-pole System Using Parallel Computing

5-111

agent = rlACAgent(actor,critic,agentOpts);

Parallel Training Options

To train the agent, first specify the training options. For this example, use the following
options:

• Run each training for at most 1000 episodes, with each episode lasting at most 500
time steps.

• Display the training progress in the Episode Manager dialog box (set the Plots
option) and disable the command line display (set the Verbose option).

• Stop training when the agent receives an average cumulative reward greater than 500
over 10 consecutive episodes. At this point, the agent can balance the pendulum in the
upright position.

trainOpts = rlTrainingOptions(...
 'MaxEpisodes',1000,...
 'MaxStepsPerEpisode', 500,...
 'Verbose',false,...
 'Plots','training-progress',...
 'StopTrainingCriteria','AverageReward',...
 'StopTrainingValue',500,...
 'ScoreAveragingWindowLength',10);

The cart-pole system can be visualized during training or simulation using the plot
function.

plot(env)

5 Train and Validate Agents

5-112

To train the agent using parallel computing, specify the following training options.

• Set UseParallel option to True.
• Train the agent in parallel asynchronously by setting the

ParallelizationOptions.Mode option to "async".
• After every 32 steps, each worker computes gradients from experiences and send

them to the host.
• The AC agent requires workers to send "gradients" to the host.
• The AC agent requires 'StepsUntilDataIsSent' to be equal to

agentOptions.NumStepsToLookAhead.

trainOpts.UseParallel = true;
trainOpts.ParallelizationOptions.Mode = "async";
trainOpts.ParallelizationOptions.DataToSendFromWorkers = "gradients";
trainOpts.ParallelizationOptions.StepsUntilDataIsSent = 32;

For more information, see rlTrainingOptions.

Train Agent

Train the agent using the train function. This is a computationally intensive process that
takes several minutes to complete. To save time while running this example, load a
pretrained agent by setting doTraining to false. To train the agent yourself, set
doTraining to true. Due to randomness in the asynchronous parallel training, you can

 Train AC Agent to Balance Cart-pole System Using Parallel Computing

5-113

expect different training results from the following training plot. The example is trained
with six workers.

doTraining = false;

if doTraining
 % Train the agent.
 trainingStats = train(agent,env,trainOpts);
else
 % Load pretrained agent for the example.
 load('MATLABCartpoleParAC.mat','agent');
end

Simulate AC Agent

The cart-pole system can be visualized with plot(env) during simulation.

plot(env)

5 Train and Validate Agents

5-114

To validate the performance of the trained agent, simulate it within the cart-pole
environment. For more information on agent simulation, see rlSimulationOptions and
sim.

simOptions = rlSimulationOptions('MaxSteps',500);
experience = sim(env,agent,simOptions);

totalReward = sum(experience.Reward)

totalReward = 500

References

[1] Mnih, V, et al. "Asynchronous methods for deep reinforcement learning," International
Conference on Machine Learning, 2016.

See Also
rlTrainingOptions | train

More About
• “Train Reinforcement Learning Agents” on page 5-2

 See Also

5-115

Train DDPG Agent to Control Flying Robot
This example shows how to train a deep deterministic policy gradient (DDPG) agent to
generate trajectories for a flying robot modeled in Simulink®. For more information on
DDPG agents, see “Deep Deterministic Policy Gradient Agents” on page 4-15.

Flying Robot Model

The reinforcement learning environment for this example is a flying robot with its initial
condition randomized around a ring of radius 15 m where the orientation of the robot is
also randomized. The robot has two thrusters mounted on the side of the body which are
used to propel and steer the robot. The training goal is to drive the robot from its initial
condition to the origin facing east.

Open the model and setup initial model variables.

mdl = 'rlFlyingRobotEnv';
open_system(mdl)

% initial model state variables
theta0 = 0;
x0 = -15;
y0 = 0;

% sample time
Ts = 0.4;

% simulation length
Tf = 30;

For this model:

• The goal orientation is 0 radians (robot facing east).
• The thrust from each actuator is bounded from -1 to 1 N
• The observations from the environment are the position, orientation (sine and cosine

of orientation), velocity and angular velocity of the robot.
• The reward rt, provided at every time step is:

r1 = 10 xt
2 + yt

2 + θt 2 < 0 . 5

r2 = − 100 xt ≥ 20 yt ≥ 20

5 Train and Validate Agents

5-116

r3 = − 0 . 2 Rt − 1 + Lt − 1
2 + 0 . 3 Rt − 1− Lt − 1

2 + 0 . 03xt
2 + 0 . 03yt

2 + 0 . 02θt 2

rt = r1 + r2 + r3

where:

• xt is the position of the robot along the x-axis.
• yt is the position of the robot along the y-axis.
• θ t is the orientation of the robot.
• Lt − 1 is the control effort from the left thruster.
• Rt − 1 is the control effort from the right thruster.
• r1 is the reward when the robot is close to the goal.
• r2 is the penalty when the robot drives beyond 20 m in either the x or y direction. The

simulation is terminated when r2 < 0.
• r3 is a QR penalty that penalizes distance from the goal and control effort.

Create Integrated Model

To train an agent for the FlyingRobotEnv model, use the createIntegratedEnv
function to automatically generate an integrated model with the RL Agent block that is
ready for training.

integratedMdl = 'IntegratedFlyingRobot';
[~,agentBlk,observationInfo,actionInfo] = createIntegratedEnv(mdl,integratedMdl);

Actions and Observations

Before creating the environment object, specify names for the observation and action
specifications, and bound the thrust actions between -1 and 1.

The observation signals for this environment are
observation = x y ẋ ẏ sin θ cos θ θ̇ T.

numObs = prod(observationInfo.Dimension);
observationInfo.Name = 'observations';

The action signals for this environment are action = TR TL
T .

 Train DDPG Agent to Control Flying Robot

5-117

numAct = prod(actionInfo.Dimension);
actionInfo.LowerLimit = -ones(numAct,1);
actionInfo.UpperLimit = ones(numAct,1);
actionInfo.Name = 'thrusts';

Create Environment Interface

Create an environment interface for the flying robot with rlSimulinkEnv with the
generated model.

env = rlSimulinkEnv(integratedMdl,agentBlk,observationInfo,actionInfo);

Reset Function

Create a custom reset function that randomizes the initial position of the robot along a
ring of radius 15 m and the initial orientation. See flyingRobotResetFcn for details
of the reset function.

env.ResetFcn = @(in) flyingRobotResetFcn(in);

Fix the random generator seed for reproducibility.

rng(0)

Create DDPG agent

A DDPG agent approximates the long-term reward given observations and actions using a
critic value function representation. To create the critic, first create a deep neural
network with two inputs (the observation and action) and one output. For more
information on creating a neural network value function representation, see “Create
Policy and Value Function Representations” on page 3-2.

% specify the number of outputs for the hidden layers.
hiddenLayerSize = 100;

observationPath = [
 imageInputLayer([numObs 1 1],'Normalization','none','Name','observation')
 fullyConnectedLayer(hiddenLayerSize,'Name','fc1')
 reluLayer('Name','relu1')
 fullyConnectedLayer(hiddenLayerSize,'Name','fc2')
 additionLayer(2,'Name','add')
 reluLayer('Name','relu2')
 fullyConnectedLayer(hiddenLayerSize,'Name','fc3')
 reluLayer('Name','relu3')
 fullyConnectedLayer(1,'Name','fc4')];

5 Train and Validate Agents

5-118

actionPath = [
 imageInputLayer([numAct 1 1],'Normalization','none','Name','action')
 fullyConnectedLayer(hiddenLayerSize,'Name','fc5')];

% create the layerGraph
criticNetwork = layerGraph(observationPath);
criticNetwork = addLayers(criticNetwork,actionPath);

% connect actionPath to obervationPath
criticNetwork = connectLayers(criticNetwork,'fc5','add/in2');

Specify options for the critic using rlRepresentationOptions.

criticOptions = rlRepresentationOptions('LearnRate',1e-03,'GradientThreshold',1);

Create the critic representation using the specified neural network and options. You must
also specify the action and observation specification for the critic. For more information,
see rlRepresentation.

critic = rlRepresentation(criticNetwork,observationInfo,actionInfo,...
 'Observation',{'observation'},'Action',{'action'},criticOptions);

A DDPG agent decides which action to take given observations using an actor
representation. To create the actor, first create a deep neural network with one input (the
observation) and one output (the action).

Construct the actor in a similar manner to the critic.

actorNetwork = [
 imageInputLayer([numObs 1 1],'Normalization','none','Name','observation')
 fullyConnectedLayer(hiddenLayerSize,'Name','fc1')
 reluLayer('Name','relu1')
 fullyConnectedLayer(hiddenLayerSize,'Name','fc2')
 reluLayer('Name','relu2')
 fullyConnectedLayer(hiddenLayerSize,'Name','fc3')
 reluLayer('Name','relu3')
 fullyConnectedLayer(numAct,'Name','fc4')
 tanhLayer('Name','tanh1')];

actorOptions = rlRepresentationOptions('LearnRate',1e-04,'GradientThreshold',1);

actor = rlRepresentation(actorNetwork,observationInfo,actionInfo,...
 'Observation',{'observation'},'Action',{'tanh1'},actorOptions);

 Train DDPG Agent to Control Flying Robot

5-119

To create the DDPG agent, first specify the DDPG agent options using
rlDDPGAgentOptions.

agentOptions = rlDDPGAgentOptions(...
 'SampleTime',Ts,...
 'TargetSmoothFactor',1e-3,...
 'ExperienceBufferLength',1e6 ,...
 'DiscountFactor',0.99,...
 'MiniBatchSize',256);
agentOptions.NoiseOptions.Variance = 1e-1;
agentOptions.NoiseOptions.VarianceDecayRate = 1e-6;

Then, create the agent using the specified actor representation, critic representation, and
agent options. For more information, see rlDDPGAgent.

agent = rlDDPGAgent(actor,critic,agentOptions);

Train Agent

To train the agent, first specify the training options. For this example, use the following
options:

• Run each training for at most 20000 episodes, with each episode lasting at most
ceil(Tf/Ts) time steps.

• Display the training progress in the Episode Manager dialog box (set the Plots
option) and disable the command line display (set the Verbose option).

• Stop training when the agent receives an average cumulative reward greater than 415
over ten consecutive episodes. At this point, the agent can drive the flying robot to the
goal position.

• Save a copy of the agent for each episode where the cumulative reward is greater than
415.

For more information, see rlTrainingOptions.

maxepisodes = 20000;
maxsteps = ceil(Tf/Ts);
trainingOptions = rlTrainingOptions(...
 'MaxEpisodes',maxepisodes,...
 'MaxStepsPerEpisode',maxsteps,...
 'StopOnError',"on",...
 'Verbose',false,...
 'Plots',"training-progress",...
 'StopTrainingCriteria',"AverageReward",...

5 Train and Validate Agents

5-120

 'StopTrainingValue',415,...
 'ScoreAveragingWindowLength',10,...
 'SaveAgentCriteria',"EpisodeReward",...
 'SaveAgentValue',415);

Train the agent using the train function. This is a computationally intensive process that
takes several hours to complete. To save time while running this example, load a
pretrained agent by setting doTraining to false. To train the agent yourself, set
doTraining to true.

doTraining = false;
if doTraining
 % Train the agent.
 trainingStats = train(agent,env,trainingOptions);
else
 % Load pretrained agent for the example.
 load('FlyingRobotDDPG.mat','agent')
end

 Train DDPG Agent to Control Flying Robot

5-121

Simulate DDPG Agent

To validate the performance of the trained agent, simulate it within the pendulum
environment. For more information on agent simulation, see rlSimulationOptions and
sim.

simOptions = rlSimulationOptions('MaxSteps',maxsteps);
experience = sim(env,agent,simOptions);

5 Train and Validate Agents

5-122

See Also
rlDDPGAgent | train

More About
• “Train Reinforcement Learning Agents” on page 5-2

 See Also

5-123

Train DDPG Agent for Adaptive Cruise Control
This example shows how to train a deep deterministic policy gradient (DDPG) agent for
adaptive cruise control (ACC) in Simulink®. For more information on DDPG agents, see
“Deep Deterministic Policy Gradient Agents” on page 4-15.

Simulink Model

The reinforcement learning environment for this example is the simple longitudinal
dynamics for an ego car and lead car. The training goal is to make the ego car travel at a
set velocity while maintaining a safe distance from lead car by controlling longitudinal
acceleration and braking. This example uses the same vehicle model as the “Adaptive
Cruise Control System Using Model Predictive Control” (Model Predictive Control
Toolbox) example.

Specify the initial position and velocity for the two vehicles.

x0_lead = 50; % initial position for lead car (m)
v0_lead = 25; % initial velocity for lead car (m/s)
x0_ego = 10; % initial position for ego car (m)
v0_ego = 20; % initial velocity for ego car (m/s)

Specify standstill default spacing (m), time gap (s) and driver-set velocity (m/s).

D_default = 10;
t_gap = 1.4;
v_set = 30;

Considering the physical limitations of the vehicle dynamics, the acceleration is
constrained to the range [-3,2] (m/s^2).

amin_ego = -3;
amax_ego = 2;

Define the sample time Ts and simulation duration Tf in seconds.

Ts = 0.1;
Tf = 60;

Open the model.

mdl = 'rlACCMdl';
open_system(mdl)
agentblk = [mdl '/RL Agent'];

5 Train and Validate Agents

5-124

For this model:

• The acceleration action signal from the agent to the environment is from -3 to 2 m/
s^2.

• The reference velocity for ego car Vref is defined as follows. If relative distance is less
than safe distance, ego car tracks the minimum of lead car velocity and driver-set
velocity. In this manner, the ego car maintains some distance from lead car. If the
relative distance is greater than safe distance, the ego car tracks driver-set velocity. In
this example, safe distance is defined as a linear function of ego car longitudinal
velocity V; that is, tgap * V + Ddefault. The safe distance determines the reference
tracking velocity for the ego car.

• The observations from the environment are the velocity error e = Vref − Vego, its

integral ∫e, and the ego car longitudinal velocity V.

• The simulation is terminated when longitudinal velocity of the ego car is less than 0, or
the relative distance between the lead car and ego car becomes less than 0.

• The reward rt, provided at every time step t, is:

rt = − (0 . 1et
2 + ut − 1

2) + Mt

where ut − 1 is the control input from the previous time step. The logical value Mt = 1 if
velocity error et

2 < = 0 . 25, otherwise Mt = 0.

 Train DDPG Agent for Adaptive Cruise Control

5-125

Create Environment Interface

Create a reinforcement learning environment interface for the model.

% create the observation info
observationInfo = rlNumericSpec([3 1],'LowerLimit',-inf*ones(3,1),'UpperLimit',inf*ones(3,1));
observationInfo.Name = 'observations';
observationInfo.Description = 'information on velocity error and ego velocity';
% action Info
actionInfo = rlNumericSpec([1 1],'LowerLimit',-3,'UpperLimit',2);
actionInfo.Name = 'acceleration';
% define environment
env = rlSimulinkEnv(mdl,agentblk,observationInfo,actionInfo);

To define the initial condition for the position of the lead car, specify an environment reset
function using an anonymous function handle.

% randomize initial positions of lead car
env.ResetFcn = @(in)localResetFcn(in);

Fix the random generator seed for reproducibility.

rng('default')

Create DDPG agent

A DDPG agent approximates the long-term reward given observations and actions using a
critic value function representation. To create the critic, first create a deep neural
network with two inputs, the state and action, and one output. For more information on
creating a neural network value function representation, see “Create Policy and Value
Function Representations” on page 3-2.

L = 48; % number of neurons
statePath = [
 imageInputLayer([3 1 1],'Normalization','none','Name','observation')
 fullyConnectedLayer(L,'Name','fc1')
 reluLayer('Name','relu1')
 fullyConnectedLayer(L,'Name','fc2')
 additionLayer(2,'Name','add')
 reluLayer('Name','relu2')
 fullyConnectedLayer(L,'Name','fc3')
 reluLayer('Name','relu3')
 fullyConnectedLayer(1,'Name','fc4')];

actionPath = [

5 Train and Validate Agents

5-126

 imageInputLayer([1 1 1],'Normalization','none','Name','action')
 fullyConnectedLayer(L, 'Name', 'fc5')];

criticNetwork = layerGraph(statePath);
criticNetwork = addLayers(criticNetwork, actionPath);

criticNetwork = connectLayers(criticNetwork,'fc5','add/in2');

View the critic network configuration.

plot(criticNetwork)

Specify options for the critic representation using rlRepresentationOptions.

criticOptions = rlRepresentationOptions('LearnRate',1e-3,'GradientThreshold',1,'L2RegularizationFactor',1e-4);

 Train DDPG Agent for Adaptive Cruise Control

5-127

Create the critic representation using the specified neural network and options. You must
also specify the action and observation info for the critic, which you obtain from the
environment interface. For more information, see rlRepresentation.

critic = rlRepresentation(criticNetwork,observationInfo,actionInfo,...
 'Observation',{'observation'},'Action',{'action'},criticOptions);

A DDPG agent decides which action to take given observations using an actor
representation. To create the actor, first create a deep neural network with one input, the
observation, and one output, the action.

Construct the actor similarly to the critic.

actorNetwork = [
 imageInputLayer([3 1 1],'Normalization','none','Name','observation')
 fullyConnectedLayer(L,'Name','fc1')
 reluLayer('Name','relu1')
 fullyConnectedLayer(L,'Name','fc2')
 reluLayer('Name','relu2')
 fullyConnectedLayer(L,'Name','fc3')
 reluLayer('Name','relu3')
 fullyConnectedLayer(1,'Name','fc4')
 tanhLayer('Name','tanh1')
 scalingLayer('Name','ActorScaling1','Scale',2.5,'Bias',-0.5)];
actorOptions = rlRepresentationOptions('LearnRate',1e-4,'GradientThreshold',1,'L2RegularizationFactor',1e-4);
actor = rlRepresentation(actorNetwork,observationInfo,actionInfo,...
 'Observation',{'observation'},'Action',{'ActorScaling1'},actorOptions);

To create the DDPG agent, first specify the DDPG agent options using
rlDDPGAgentOptions.

agentOptions = rlDDPGAgentOptions(...
 'SampleTime',Ts,...
 'TargetSmoothFactor',1e-3,...
 'ExperienceBufferLength',1e6,...
 'DiscountFactor',0.99,...
 'MiniBatchSize',64);
agentOptions.NoiseOptions.Variance = 0.6;
agentOptions.NoiseOptions.VarianceDecayRate = 1e-5;

Then, create the DDPG agent using the specified actor representation, critic
representation, and agent options. For more information, see rlDDPGAgent.

agent = rlDDPGAgent(actor,critic,agentOptions);

5 Train and Validate Agents

5-128

Train Agent

To train the agent, first specify the training options. For this example, use the following
options:

• Run each training episode for at most 5000 episodes, with each episode lasting at
most 600 time steps.

• Display the training progress in the Episode Manager dialog box.
• Stop training when the agent receives an episode reward greater than 260.

For more information, see rlTrainingOptions.

maxepisodes = 5000;
maxsteps = ceil(Tf/Ts);
trainingOpts = rlTrainingOptions(...
 'MaxEpisodes',maxepisodes,...
 'MaxStepsPerEpisode',maxsteps,...
 'Verbose',false,...
 'Plots','training-progress',...
 'StopTrainingCriteria','EpisodeReward',...
 'StopTrainingValue',260);

Train the agent using the train function. This is a computationally intensive process that
takes several minutes to complete. To save time while running this example, load a
pretrained agent by setting doTraining to false. To train the agent yourself, set
doTraining to true.

doTraining = false;

if doTraining
 % Train the agent.
 trainingStats = train(agent,env,trainingOpts);
else
 % Load pretrained agent for the example.
 load('SimulinkACCDDPG.mat','agent')
end

 Train DDPG Agent for Adaptive Cruise Control

5-129

Simulate DDPG Agent

To validate the performance of the trained agent, uncomment the following commands
and simulate it within the Simulink environment. For more information on agent
simulation, see rlSimulationOptions and sim.

% simOptions = rlSimulationOptions('MaxSteps',maxsteps);
% experience = sim(env,agent,simOptions);

To demonstrate the trained agent using deterministic initial conditions, simulate the
model in Simulink.

x0_lead = 80;
sim(mdl)

The following plots show the simulation results when lead car is 70 (m) ahead of ego car.

5 Train and Validate Agents

5-130

• In the first 28 seconds, relative distance is greater than safe distance (bottom plot),
therefore the ego car tracks set velocity (middle plot). To speed up and reach the set
velocity, acceleration is positive (top plot).

• From 28 to 60 seconds, relative distance is less than safe distance (bottom plot),
therefore the ego car tracks the minimum of the lead velocity and set velocity. From 28
to 36 seconds, the lead velocity is less than the set velocity (middle plot). To slow down
and track the lead car velocity, acceleration is negative (top plot). From 36 to 60
seconds, ego car adjusts its acceleration to track the reference velocity closely (middle
plot). Within this time interval, the ego car tracks the set velocity from 43 to 52
seconds and tracks lead velocity from 36 to 43 seconds and 52 to 60 seconds.

 Train DDPG Agent for Adaptive Cruise Control

5-131

5 Train and Validate Agents

5-132

Close the Simulink model.

bdclose(mdl)

Local Function

function in = localResetFcn(in)
% reset initial position of lead car
in = setVariable(in,'x0_lead',40+randi(60,1,1));
end

See Also
train

More About
• “Train Reinforcement Learning Agents” on page 5-2
• “Create Policy and Value Function Representations” on page 3-2

 See Also

5-133

Train DQN Agent for Lane Keeping Assist
This example shows how to train a Deep Q-Learning Network (DQN) agent for lane
keeping assist (LKA) in Simulink®. For more information on DQN agents, see “Deep Q-
Network Agents” on page 4-11.

Simulink Model for Ego Car

The reinforcement learning environment for this example is a simple bicycle model for
ego vehicle dynamics. The training goal is to keep the ego vehicle traveling along the
centerline of the lanes by adjusting the front steering angle. This example uses the same
vehicle model as in “Lane Keeping Assist System Using Model Predictive Control” (Model
Predictive Control Toolbox) example.

m = 1575; % total vehicle mass (kg)
Iz = 2875; % yaw moment of inertia (mNs^2)
lf = 1.2; % longitudinal distance from center of gravity to front tires (m)
lr = 1.6; % longitudinal distance from center of gravity to rear tires (m)
Cf = 19000; % cornering stiffness of front tires (N/rad)
Cr = 33000; % cornering stiffness of rear tires (N/rad)
Vx = 15; % longitudinal velocity (m/s)

Define the sample time, Ts, and simulation duration, T, in seconds.

Ts = 0.1;
T = 15;

The output of the LKA system is the front steering angle of the ego car. Considering the
physical limitations of the ego car, the steering angle is constrained to the range [-0.5,0.5]
rad.

u_min = -0.5;
u_max = 0.5;

The curvature of the road is defined by a constant 0.001(m−1). The initial value for lateral
deviation is 0.2 m and the initial value for relative yaw angle is -0.1 rad.

rho = 0.001;
e1_initial = 0.2;
e2_initial = -0.1;

Open the model.

5 Train and Validate Agents

5-134

mdl = 'rlLKAMdl';
open_system(mdl);
agentblk = [mdl '/RL Agent'];

For this model:

• The steering-angle action signal from the agent to the environment is from -15 deg to
15 deg.

• The observations from the environment are the lateral deviation e1, relative yaw angle
e2, their derivatives ė1 and ė2, and their integrals ∫e1 and ∫e2.

• The simulation is terminated when lateral deviation e1 > 1 .
• The reward rt, provided at every time step t, is:

rt = − (10e1
2 + 5e2

2 + 2u2 + 5ė1
2 + 5ė2

2)

where u is the control input from the previous time step t − 1.

 Train DQN Agent for Lane Keeping Assist

5-135

Create Environment Interface

Create a reinforcement learning environment interface for the ego vehicle. To do so, first
create the observation and action specifications.

% create observation info
observationInfo = rlNumericSpec([6 1],'LowerLimit',-inf*ones(6,1),'UpperLimit',inf*ones(6,1));
observationInfo.Name = 'observations';
observationInfo.Description = 'information on lateral deviation and relative yaw angle';
% create action Info
actionInfo = rlFiniteSetSpec((-15:15)*pi/180);
actionInfo.Name = 'steering';
% define environment
env = rlSimulinkEnv(mdl,agentblk,observationInfo,actionInfo);

The interface has a discrete action space where the agent can apply one of 31 possible
steering angles from -15 degrees to 15 degrees.

To define the initial condition for lateral deviation and relative yaw angle, specify an
environment reset function using an anonymous function handle.

% randomize initial values for lateral deviation and relative yaw angle
env.ResetFcn = @(in)localResetFcn(in);

Fix the random generator seed for reproducibility.

rng(0)

Create DQN agent

A DQN agent approximates the long-term reward given observations and actions using a
critic value function representation. To create the critic, first create a deep neural
network with two inputs, the state and action, and one output. For more information on
creating a deep neural network value function representation, see “Create Policy and
Value Function Representations” on page 3-2.

L = 24; % number of neurons
statePath = [
 imageInputLayer([6 1 1],'Normalization','none','Name','state')
 fullyConnectedLayer(L,'Name','fc1')
 reluLayer('Name','relu1')
 fullyConnectedLayer(L,'Name','fc2')
 additionLayer(2,'Name','add')
 reluLayer('Name','relu2')

5 Train and Validate Agents

5-136

 fullyConnectedLayer(L,'Name','fc3')
 reluLayer('Name','relu3')
 fullyConnectedLayer(1,'Name','fc4')];

actionPath = [
 imageInputLayer([1 1 1],'Normalization','none','Name','action')
 fullyConnectedLayer(L,'Name','fc5')];

criticNetwork = layerGraph(statePath);
criticNetwork = addLayers(criticNetwork, actionPath);
criticNetwork = connectLayers(criticNetwork,'fc5','add/in2');

View the critic network configuration.

figure
plot(criticNetwork)

 Train DQN Agent for Lane Keeping Assist

5-137

Specify options for the critic representation using rlRepresentationOptions.

criticOptions = rlRepresentationOptions('LearnRate',1e-3,'GradientThreshold',1,'L2RegularizationFactor',1e-4);

Create the critic representation using the specified deep neural network and options. You
must also specify the action and observation information for the critic, which you obtain
from the environment interface. For more information, see rlRepresentation.

critic = rlRepresentation(criticNetwork,observationInfo,actionInfo,...
 'Observation',{'state'},'Action',{'action'},criticOptions);

To create the DQN agent, first specify the DQN agent options using
rlDQNAgentOptions.

5 Train and Validate Agents

5-138

agentOptions = rlDQNAgentOptions(...
 'SampleTime',Ts,...
 'UseDoubleDQN',true,...
 'TargetSmoothFactor',1e-3,...
 'DiscountFactor',0.99,...
 'ExperienceBufferLength',1e6,...
 'MiniBatchSize',64);

Then, create the DQN agent using the specified critic representation and agent options.
For more information, see rlDQNAgent.

agent = rlDQNAgent(critic,agentOptions);

Train Agent

To train the agent, first specify the training options. For this example, use the following
options:

• Run each training episode for at most 5000 episodes, with each episode lasting at
most 150 time steps.

• Display the training progress in the Episode Manager dialog box.
• Stop training when the episode reward reaches -1.
• Save a copy of the agent for each episode where the cumulative reward is greater than

-2.5.

For more information, see rlTrainingOptions.

maxepisodes = 5000;
maxsteps = ceil(T/Ts);
trainingOpts = rlTrainingOptions(...
 'MaxEpisodes',maxepisodes,...
 'MaxStepsPerEpisode',maxsteps,...
 'Verbose',false,...
 'Plots','training-progress',...
 'StopTrainingCriteria','EpisodeReward',...
 'StopTrainingValue',-1,...
 'SaveAgentCriteria','EpisodeReward',...
 'SaveAgentValue',-2.5);

Train the agent using the train function. This is a computationally intensive process that
takes several hours to complete. To save time while running this example, load a
pretrained agent by setting doTraining to false. To train the agent yourself, set
doTraining to true.

 Train DQN Agent for Lane Keeping Assist

5-139

doTraining = false;

if doTraining
 % Train the agent.
 trainingStats = train(agent,env,trainingOpts);
else
 % Load pretrained agent for the example.
 load('SimulinkLKADQN.mat','agent')
end

Simulate DQN Agent

To validate the performance of the trained agent, uncomment the following two lines and
simulate it within the environment. For more information on agent simulation, see
rlSimulationOptions and sim.

% simOptions = rlSimulationOptions('MaxSteps',maxsteps);
% experience = sim(env,agent,simOptions);

5 Train and Validate Agents

5-140

To demonstrate the trained agent on deterministic initial conditions, simulate the model
in Simulink.

e1_initial = -0.4;
e2_initial = 0.2;
sim(mdl)

As shown below, the lateral error (middle plot) and relative yaw angle (bottom plot) are
both driven to zero. The vehicle starts from off centerline (-0.4 m) and non-zero yaw angle
error (0.2 rad). The lane keeping assist makes the ego car traveling along the centerline
around 2.5 seconds. The steering angle (top plot) shows that the controller reaches
steady-state after 2 seconds.

 Train DQN Agent for Lane Keeping Assist

5-141

5 Train and Validate Agents

5-142

Close the Simulink model.

bdclose(mdl)

Local Function

function in = localResetFcn(in)
% reset
in = setVariable(in,'e1_initial', 0.5*(-1+2*rand)); % random value for lateral deviation
in = setVariable(in,'e2_initial', 0.1*(-1+2*rand)); % random value for relative yaw angle
end

See Also
train

More About
• “Train Reinforcement Learning Agents” on page 5-2
• “Create Policy and Value Function Representations” on page 3-2

 See Also

5-143

Train DDPG Agent for Path Following Control
This example shows how to train a deep deterministic policy gradient (DDPG) agent for
path-following control (PFC) in Simulink®. For more information on DDPG agents, see
“Deep Deterministic Policy Gradient Agents” on page 4-15.

Simulink Model

The reinforcement learning environment for this example is a simple bicycle model for
ego car and a simple longitudinal model for lead car. The training goal is to make the ego
car travel at a set velocity while maintaining a safe distance from lead car by controlling
longitudinal acceleration and braking, while also keeping the ego car travelling along the
centerline of its lane by controlling the front steering angle. For more information on PFC,
see Path Following Control System. The ego car dynamics are specified by the following
parameters.

m = 1600; % total vehicle mass (kg)
Iz = 2875; % yaw moment of inertia (mNs^2)
lf = 1.4; % longitudinal distance from center of gravity to front tires (m)
lr = 1.6; % longitudinal distance from center of gravity to rear tires (m)
Cf = 19000; % cornering stiffness of front tires (N/rad)
Cr = 33000; % cornering stiffness of rear tires (N/rad)
tau = 0.5; % longitudinal time constant

Specify the initial position and velocity for the two vehicles.

x0_lead = 50; % initial position for lead car (m)
v0_lead = 24; % initial velocity for lead car (m/s)
x0_ego = 10; % initial position for ego car (m)
v0_ego = 18; % initial velocity for ego car (m/s)

Specify standstill default spacing (m), time gap (s) and driver-set velocity (m/s).

D_default = 10;
t_gap = 1.4;
v_set = 28;

Considering the physical limitations of the vehicle dynamics, the acceleration is
constrained to the range [-3,2] (m/s^2), and steering angle is constrained to be
[-0.5,0.5] (rad).

amin_ego = -3;
amax_ego = 2;

5 Train and Validate Agents

5-144

umin_ego = -0.5;
umax_ego = 0.5;

The curvature of the road is defined by a constant 0.001(m−1). The initial value for lateral
deviation is 0.2 m and the initial value for relative yaw angle is -0.1 rad.

rho = 0.001;
e1_initial = 0.2;
e2_initial = -0.1;

Define the sample time, Ts, and simulation duration, Tf, in seconds.

Ts = 0.1;
Tf = 60;

Open the model.

mdl = 'rlPFCMdl';
open_system(mdl)
agentblk = [mdl '/RL Agent'];

For this model:

 Train DDPG Agent for Path Following Control

5-145

• The action signal consists of acceleration and steering angle actions. The acceleration
action signal takes value between -3 and 2 (m/s^2). The steering action signal takes
value between -15 degrees (-0.2618 rad) to 15 degrees (0.2618 rad).

• The reference velocity for ego car Vref is defined as follows. If relative distance is less
than safe distance, ego car tracks the minimum of lead car velocity and driver-set
velocity. In this manner, ego car maintains some distance from lead car. If relative
distance is greater than safe distance, ego car tracks driver-set velocity. In this
example, safe distance is defined as a linear function of ego car longitudinal velocity
V, that is, tgap * V + Ddefault. The safe distance determines the tracking velocity for the
ego car.

• The observations from the environment contain the longitudinal measurements: the
velocity error eV = Vref − Vego, its integral ∫e and ego car longitudinal velocity V. In
addition, the observations contain the lateral measurements: the lateral deviation e1,
relative yaw angle e2, their derivatives ė1 and ė2, and their integrals ∫e1 and ∫e2.

• The simulation is terminated when lateral deviation e1 > 1 or longitudinal velocity
Vego < 0 . 5 or relative distance between lead car and ego car Drel < 0.

• The reward rt, provided at every time step t, is:

rt = − (100e1
2 + 500ut − 1

2 + 10eV
2 + 100at − 1

2) × 1e−3− 10Ft + 2Ht + Mt

where ut − 1 is the steering input from the previous time step t − 1, at − 1 is the
acceleration input from the previous time step. The three logical values are: Ft = 1if
simulation is terminated, otherwise Ft = 0; Ht = 1 if lateral error e1

2 < 0 . 01, otherwise
Ht = 0; Mt = 1 if velocity error eV

2 < 1, otherwise Mt = 0. The three logical terms in the
reward encourage the agent to make both lateral error and velocity error small, in the
meantime, penalize the agent if the simulation is terminated early.

Create Environment Interface

Create an environment interface for the Simulink model.

% create the observation info
observationInfo = rlNumericSpec([9 1],'LowerLimit',-inf*ones(9,1),'UpperLimit',inf*ones(9,1));
observationInfo.Name = 'observations';
% action Info
actionInfo = rlNumericSpec([2 1],'LowerLimit',[-3;-0.2618],'UpperLimit',[2;0.2618]);
actionInfo.Name = 'accel;steer';

5 Train and Validate Agents

5-146

% define environment
env = rlSimulinkEnv(mdl,agentblk,observationInfo,actionInfo);

To define the initial conditions, specify an environment reset function using an anonymous
function handle.

% randomize initial positions of lead car, lateral deviation and relative
% yaw angle
env.ResetFcn = @(in)localResetFcn(in);

Fix the random generator seed for reproducibility.

rng(0)

Create DDPG agent

A DDPG agent approximates the long-term reward given observations and actions using a
critic value function representation. To create the critic, first create a deep neural
network with two inputs, the state and action, and one output. For more information on
creating a deep neural network value function representation, see “Create Policy and
Value Function Representations” on page 3-2.

L = 100; % number of neurons
statePath = [
 imageInputLayer([9 1 1],'Normalization','none','Name','observation')
 fullyConnectedLayer(L,'Name','fc1')
 reluLayer('Name','relu1')
 fullyConnectedLayer(L,'Name','fc2')
 additionLayer(2,'Name','add')
 reluLayer('Name','relu2')
 fullyConnectedLayer(L,'Name','fc3')
 reluLayer('Name','relu3')
 fullyConnectedLayer(1,'Name','fc4')];

actionPath = [
 imageInputLayer([2 1 1],'Normalization','none','Name','action')
 fullyConnectedLayer(L,'Name','fc5')];

criticNetwork = layerGraph(statePath);
criticNetwork = addLayers(criticNetwork,actionPath);

criticNetwork = connectLayers(criticNetwork,'fc5','add/in2');

View the critic network configuration.

 Train DDPG Agent for Path Following Control

5-147

figure
plot(criticNetwork)

Specify options for the critic representation using rlRepresentationOptions.

criticOptions = rlRepresentationOptions('LearnRate',1e-3,'GradientThreshold',1,'L2RegularizationFactor',1e-4);

Create the critic representation using the specified deep neural network and options. You
must also specify the action and observation info for the critic, which you obtain from the
environment interface. For more information, see rlRepresentation.

critic = rlRepresentation(criticNetwork,observationInfo,actionInfo,...
 'Observation',{'observation'},'Action',{'action'},criticOptions);

5 Train and Validate Agents

5-148

A DDPG agent decides which action to take given observations using an actor
representation. To create the actor, first create a deep neural network with one input, the
observation, and one output, the action.

Construct the actor similarly to the critic.

actorNetwork = [
 imageInputLayer([9 1 1],'Normalization','none','Name','observation')
 fullyConnectedLayer(L,'Name','fc1')
 reluLayer('Name','relu1')
 fullyConnectedLayer(L,'Name','fc2')
 reluLayer('Name','relu2')
 fullyConnectedLayer(L,'Name','fc3')
 reluLayer('Name','relu3')
 fullyConnectedLayer(2,'Name','fc4')
 tanhLayer('Name','tanh1')
 scalingLayer('Name','ActorScaling1','Scale',reshape([2.5;0.2618],[1,1,2]),'Bias',reshape([-0.5;0],[1,1,2]))];
actorOptions = rlRepresentationOptions('LearnRate',1e-4,'GradientThreshold',1,'L2RegularizationFactor',1e-4);
actor = rlRepresentation(actorNetwork,observationInfo,actionInfo,...
 'Observation',{'observation'},'Action',{'ActorScaling1'},actorOptions);

To create the DDPG agent, first specify the DDPG agent options using
rlDDPGAgentOptions.

agentOptions = rlDDPGAgentOptions(...
 'SampleTime',Ts,...
 'TargetSmoothFactor',1e-3,...
 'ExperienceBufferLength',1e6,...
 'DiscountFactor',0.99,...
 'MiniBatchSize',64);
agentOptions.NoiseOptions.Variance = [0.6;0.1];
agentOptions.NoiseOptions.VarianceDecayRate = 1e-5;

Then, create the DDPG agent using the specified actor representation, critic
representation and agent options. For more information, see rlDDPGAgent.

agent = rlDDPGAgent(actor,critic,agentOptions);

Train Agent

To train the agent, first specify the training options. For this example, use the following
options:

• Run each training episode for at most 10000 episodes, with each episode lasting at
most 600 time steps.

 Train DDPG Agent for Path Following Control

5-149

• Display the training progress in the Episode Manager dialog box.
• Stop training when the agent receives an average cumulative reward greater than

1700.

For more information, see rlTrainingOptions.

maxepisodes = 1e4;
maxsteps = ceil(Tf/Ts);
trainingOpts = rlTrainingOptions(...
 'MaxEpisodes',maxepisodes,...
 'MaxStepsPerEpisode',maxsteps,...
 'Verbose',false,...
 'Plots','training-progress',...
 'StopTrainingCriteria','EpisodeReward',...
 'StopTrainingValue',1700);

Train the agent using the train function. This is a computationally intensive process that
takes several minutes to complete. To save time while running this example, load a
pretrained agent by setting doTraining to false. To train the agent yourself, set
doTraining to true.

doTraining = false;

if doTraining
 % Train the agent.
 trainingStats = train(agent,env,trainingOpts);
else
 % Load pretrained agent for the example.
 load('SimulinkPFCDDPG.mat','agent')
end

5 Train and Validate Agents

5-150

Simulate DDPG Agent

To validate the performance of the trained agent, uncomment the following two lines and
simulate it within the environment. For more information on agent simulation, see
rlSimulationOptions and sim.

% simOptions = rlSimulationOptions('MaxSteps',maxsteps);
% experience = sim(env,agent,simOptions);

To demonstrate the trained agent using deterministic initial conditions, simulate the
model in Simulink.

e1_initial = -0.4;
e2_initial = 0.1;
x0_lead = 80;
sim(mdl)

The following plots show the simulation results when lead car is 70 (m) ahead of ego car.

 Train DDPG Agent for Path Following Control

5-151

• In the first 35 seconds, relative distance is greater than safe distance (bottom right
plot), thus ego car tracks set velocity (top right plot). To speed up and reach the set
velocity, acceleration is mostly non-negative (top left plot).

• From 35 to 42 seconds, relative distance is mostly less than safe distance (bottom
right plot), thus ego car tracks the minimum of lead velocity and set velocity. Since
lead velocity is less than set velocity (top right plot), to track lead velocity, acceleration
becomes non-zero (top left plot).

• From 42 to 58 seconds, ego car tracks set velocity (top right plot) and acceleration
remains zero (top left plot).

• From 58 to 60 seconds, relative distance becomes less than safe distance (bottom
right plot), thus ego car slows down and tracks lead velocity.

• The bottom left plot shows the lateral deviation. As shown in the plot, the lateral
deviation is greatly decreased within one second. The lateral deviation remains less
than 0.05 m.

5 Train and Validate Agents

5-152

Close Simulink model.

bdclose(mdl)

Local Function

function in = localResetFcn(in)
% reset
in = setVariable(in,'x0_lead',40+randi(60,1,1)); % random value for initial position of lead car
in = setVariable(in,'e1_initial', 0.5*(-1+2*rand)); % random value for lateral deviation

 Train DDPG Agent for Path Following Control

5-153

in = setVariable(in,'e2_initial', 0.1*(-1+2*rand)); % random value for relative yaw angle
end

See Also
train

More About
• “Train Reinforcement Learning Agents” on page 5-2
• “Create Policy and Value Function Representations” on page 3-2

5 Train and Validate Agents

5-154

Train DQN Agent for Lane Keeping Assist Using Parallel
Computing

This example extends the example “Train DQN Agent for Lane Keeping Assist” on page 5-
134 to demonstrate parallel training for a deep Q-learning network (DQN) agent for lane-
keeping assist (LKA) in Simulink®.

For more information on DQN agents, see “Deep Q-Network Agents” on page 4-11. For an
example that trains a DQN agent in MATLAB®, see “Train DQN Agent to Balance Cart-
Pole System” on page 5-10.

DQN Parallel Training Overview

For DQN, each worker generates new experiences from its copy of the agent and the
environment. After every N steps, the worker sends experiences to the host agent. The
host agent will updates its parameters as follows:

• For asynchronous training, the host agent learns from the received experiences and
sends the updated parameters back to the worker that provided the experiences.
Then, the worker continues to generate experiences from its environment using the
updated parameters.

• For synchronous training, the host agent waits to receive experiences from all of the
workers and learns from these experiences. The host then sends updated parameters
to all the workers at the same time. Then, all workers continue to generate
experiences using the updated parameters.

Simulink Model for Ego Car

The reinforcement learning environment for this example is a simple bicycle model for
ego vehicle dynamics. The training goal is to keep the ego vehicle traveling along the
centerline of the lanes by adjusting the front steering angle. This example uses the same
vehicle model as in “Train DQN Agent for Lane Keeping Assist” on page 5-134.

m = 1575; % total vehicle mass (kg)
Iz = 2875; % yaw moment of inertia (mNs^2)
lf = 1.2; % longitudinal distance from center of gravity to front tires (m)
lr = 1.6; % longitudinal distance from center of gravity to rear tires (m)
Cf = 19000; % cornering stiffness of front tires (N/rad)
Cr = 33000; % cornering stiffness of rear tires (N/rad)
Vx = 15; % longitudinal velocity (m/s)

Define the sample time, Ts, and simulation duration, T, in seconds.

 Train DQN Agent for Lane Keeping Assist Using Parallel Computing

5-155

Ts = 0.1;
T = 15;

The output of the LKA system is the front steering angle of the ego car. Considering the
physical limitations of the ego car, the steering angle is constrained to the range [-0.5,0.5]
rad.

u_min = -0.5;
u_max = 0.5;

The curvature of the road is defined by a constant 0.001(m−1). The initial value for lateral
deviation is 0.2 m and the initial value for relative yaw angle is -0.1 rad.

rho = 0.001;
e1_initial = 0.2;
e2_initial = -0.1;

Open the model.

mdl = 'rlLKAMdl';
open_system(mdl)
agentblk = [mdl '/RL Agent'];

5 Train and Validate Agents

5-156

For this model:

• The steering-angle action signal from the agent to the environment is from -15 deg to
15 deg.

• The observations from the environment are the lateral deviation e1, relative yaw angle
e2, their derivatives ė1 and ė2, and their integrals ∫e1 and ∫e2.

• The simulation is terminated when lateral deviation e1 > 1 .

• The reward rt, provided at every time step t, is:

rt = − (10e1
2 + 5e2

2 + 2u2 + 5ė1
2 + 5ė2

2)

where u is the control input from the previous time step t − 1.

Create Environment Interface

Create a RL environment interface for ego vehicle.

% create observation info
observationInfo = rlNumericSpec([6 1],'LowerLimit',-inf*ones(6,1),'UpperLimit',inf*ones(6,1));
observationInfo.Name = 'observations';
observationInfo.Description = 'information on lateral deviation and relative yaw angle';
% create action Info
actionInfo = rlFiniteSetSpec((-15:15)*pi/180);
actionInfo.Name = 'steering';
% define environment
env = rlSimulinkEnv(mdl,agentblk,observationInfo,actionInfo);

The interface has a discrete action space where the agent can apply one of 31 possible
steering angles from -15 degrees to 15 degrees.

To define the initial condition for lateral deviation and relative yaw angle, specify an
environment reset function using an anonymous function handle.

% randomize initial values for lateral deviation and relative yaw angle
env.ResetFcn = @(in)localResetFcn(in);

Fix the random generator seed for reproducibility.

rng(0)

 Train DQN Agent for Lane Keeping Assist Using Parallel Computing

5-157

Create DQN agent

A DQN agent approximates the long-term reward given observations and actions using a
critic value function representation. To create the critic, first create a deep neural
network with two inputs, the state and action, and one output. For more information on
creating a deep neural network value function representation, see “Create Policy and
Value Function Representations” on page 3-2.

L = 24; % number of neurons
statePath = [
 imageInputLayer([6 1 1],'Normalization','none','Name','state')
 fullyConnectedLayer(L,'Name','fc1')
 reluLayer('Name','relu1')
 fullyConnectedLayer(L,'Name','fc2')
 additionLayer(2,'Name','add')
 reluLayer('Name','relu2')
 fullyConnectedLayer(L,'Name','fc3')
 reluLayer('Name','relu3')
 fullyConnectedLayer(1,'Name','fc4')];

actionPath = [
 imageInputLayer([1 1 1],'Normalization','none','Name','action')
 fullyConnectedLayer(L, 'Name', 'fc5')];

criticNetwork = layerGraph(statePath);
criticNetwork = addLayers(criticNetwork,actionPath);
criticNetwork = connectLayers(criticNetwork,'fc5','add/in2');

Specify options for the critic representation using rlRepresentationOptions.

criticOpts = rlRepresentationOptions('LearnRate',1e-3,'GradientThreshold',1);

Create the critic representation using the specified deep neural network and options. You
must also specify the action and observation info for the critic, which you obtain from the
environment interface. For more information, see rlRepresentation.

critic = rlRepresentation(criticNetwork,observationInfo,actionInfo,'Observation',{'state'},'Action',{'action'},criticOpts);

To create the DQN agent, first specify the DQN agent options using
rlDQNAgentOptions.

agentOpts = rlDQNAgentOptions(...
 'SampleTime',Ts,...
 'UseDoubleDQN',true,...

5 Train and Validate Agents

5-158

 'TargetSmoothFactor',1e-3,...
 'DiscountFactor',0.99,...
 'ExperienceBufferLength',1e6,...
 'MiniBatchSize',64);

Then, create the DQN agent using the specified critic representation and agent options.
For more information, see rlDQNAgent.

agent = rlDQNAgent(critic,agentOpts);

Parallel Training Options

To train the agent, first specify the training options. For this example, use the following
options:

• Run each training for at most 5000 episodes, with each episode lasting at most 150
time steps.

• Display the training progress in the Episode Manager dialog box.
• Stop training when the episode reward reaches -1.
• Save a copy of the agent for each episode where the cumulative reward is greater than

-2.5.

For more information, see rlTrainingOptions.

maxepisodes = 5000;
maxsteps = ceil(T/Ts);
trainOpts = rlTrainingOptions(...
 'MaxEpisodes',maxepisodes, ...
 'MaxStepsPerEpisode',maxsteps, ...
 'Verbose',false,...
 'Plots','training-progress',...
 'StopTrainingCriteria','EpisodeReward',...
 'StopTrainingValue', -1,...
 'SaveAgentCriteria','EpisodeReward',...
 'SaveAgentValue',-2.5);

To train the agent in parallel, specify the following training options.

• Set UseParallel option to true.
• Train agent in parallel asynchronously by setting the

ParallelizationOptions.Mode option to "async".
• After every 30 steps, each worker sends experiences to the host.

 Train DQN Agent for Lane Keeping Assist Using Parallel Computing

5-159

• DQN agent requires workers to send "experiences" to the host.

trainOpts.UseParallel = true;
trainOpts.ParallelizationOptions.Mode = "async";
trainOpts.ParallelizationOptions.DataToSendFromWorkers = "experiences";
trainOpts.ParallelizationOptions.StepsUntilDataIsSent = 30;
trainOpts.ParallelizationOptions.WorkerRandomSeeds = -1;

For more information, see rlTrainingOptions.

Train Agent

Train the agent using the train function. This is a computationally intensive process that
takes several minutes to complete. To save time while running this example, load a
pretrained agent by setting doTraining to false. To train the agent yourself, set
doTraining to true. Due to randomness of the parallel training, you may expect
different training results from the plot below. The example is trained with four workers.

doTraining = false;

if doTraining
 % Train the agent.
 trainingStats = train(agent,env,trainOpts);
else
 % Load pretrained agent for the example.
 load('SimulinkLKADQNParallel.mat','agent')
end

5 Train and Validate Agents

5-160

Simulate DQN Agent

To validate the performance of the trained agent, uncomment the following two lines and
simulate it within the environment. For more information on agent simulation, see
rlSimulationOptions and sim.

% simOptions = rlSimulationOptions('MaxSteps',maxsteps);
% experience = sim(env,agent,simOptions);

To demonstrate the trained agent on deterministic initial conditions, simulate the model
in Simulink.

e1_initial = -0.4;
e2_initial = 0.2;
sim(mdl)

As shown below, the lateral error (middle plot) and relative yaw angle (bottom plot) are
both driven to zero. The vehicle starts from off centerline (-0.4 m) and non-zero yaw angle

 Train DQN Agent for Lane Keeping Assist Using Parallel Computing

5-161

error (0.2 rad). The lane keeping assist makes the ego car traveling along the centerline
around 2.5 seconds. The steering angle (top plot) shows that the controller reaches
steady-state after 2 seconds.

5 Train and Validate Agents

5-162

 Train DQN Agent for Lane Keeping Assist Using Parallel Computing

5-163

Local Function

function in = localResetFcn(in)
% reset
in = setVariable(in,'e1_initial', 0.5*(-1+2*rand)); % random value for lateral deviation
in = setVariable(in,'e2_initial', 0.1*(-1+2*rand)); % random value for relative yaw angle
end

See Also
train

More About
• “Train DQN Agent for Lane Keeping Assist” on page 5-134
• “Train Reinforcement Learning Agents” on page 5-2
• “Create Policy and Value Function Representations” on page 3-2

5 Train and Validate Agents

5-164

Train Biped Robot to Walk Using DDPG Agent
This example shows how to train a biped robot, modeled in Simscape™ Multibody™, to
walk using a deep deterministic policy gradient (DDPG) agent. For more information on
DDPG agents, see “Deep Deterministic Policy Gradient Agents” on page 4-15.

Biped Robot Model

The reinforcement learning environment for this example is a biped robot. The training
goal is to make the robot walk in a straight line using minimal control effort.

Load parameters of the model to the base MATLAB® workspace.

robotParametersRL

Open the model.

mdl = 'rlWalkingBipedRobot';
open_system(mdl)

 Train Biped Robot to Walk Using DDPG Agent

5-165

The robot is modeled using Simscape Multibody and the Simscape Multibody Contact
Forces Library.

5 Train and Validate Agents

5-166

https://www.mathworks.com/matlabcentral/fileexchange/47417-simscape-multibody-contact-forces-library
https://www.mathworks.com/matlabcentral/fileexchange/47417-simscape-multibody-contact-forces-library

For this model:

• The neutral 0 radian position is with both legs straight and the ankles flat.
• The foot contact is modeled using the Simscape Multibody Contact Forces Library.
• The agent can control 3 individual joints, the ankle, knee, and hip, on both legs of the

robot by applying torque signals from -3 to 3 Nm. The actual computed action signals
are normalized between -1 and 1.

The environment provides 29 observations to the agent. The observations are:

• Y (lateral) and Z (vertical) translations of the torso center of mass. The translation in
the Z direction is normalized to a similar range as the other observations.

• X (forward), Y (lateral), and Z (vertical) translation velocities.
• Yaw, pitch, and roll angles of the torso.
• Yaw, pitch, and roll angular velocities of the torso.
• Angular positions and velocities of the 3 joints (ankle, knee, hip) on both legs.
• Action values from the previous time step.

The episode terminates if:

• The robot torso center of mass is less than 0.1 m in Z direction (fallen) or more than 1
m in Y direction (lateral motion).

• The absolute value of either the roll, pitch, or yaw is greater than 0.7854 radians.

The reward function rt provided at every time step, is inspired by [1]. This reward
function encourages the agent to move forward by providing a positive reward for
positive forward velocity. It also encourages the agent to avoid episode termination by
providing a constant reward (25Ts

Tf) at every time step. The other terms in the reward
function are penalties for substantial changes in lateral and vertical translations, and for
the use of excess control effort.

rt = vx− 3y2− 50z2 + 25Ts
Tf − 0 . 02∑

i
ut − 1

i 2

where:

• vx is the translation velocity in X direction (forward toward goal) of the robot.

 Train Biped Robot to Walk Using DDPG Agent

5-167

https://www.mathworks.com/matlabcentral/fileexchange/47417-simscape-multibody-contact-forces-library

• y is the lateral translation displacement of the robot from the target straight line
trajectory.

• z is the normalized vertical translation displacement of the robot center of mass.
• ut − 1

i is the torque from joint i from the previous time step.
• Ts is the sample time of the environment.
• Tf is the final simulation time of the environment.

Create Environment Interface

Create the observation specification.

numObs = 29;
obsInfo = rlNumericSpec([numObs 1]);
obsInfo.Name = 'observations';

Create the action specification.

numAct = 6;
actInfo = rlNumericSpec([numAct 1],'LowerLimit',-1,'UpperLimit',1);
actInfo.Name = 'foot_torque';

Create the environment interface for the walking robot model.

blk = [mdl,'/RL Agent'];
env = rlSimulinkEnv(mdl,blk,obsInfo,actInfo);
env.ResetFcn = @(in) walkerResetFcn(in,upper_leg_length/100,lower_leg_length/100,h/100);

Create DDPG agent

A DDPG agent approximates the long-term reward given observations and actions using a
critic value function representation. A DDPG agent decides which action to take given
observations using an actor representation. The actor and critic networks for this
example are inspired by [2].

For more information on creating a deep neural network value function representation,
see “Create Policy and Value Function Representations” on page 3-2. For an example that
creates neural networks for DDPG agents, see “Train DDPG Agent to Control Double
Integrator System” on page 5-38.

Create the actor and critic networks using the createNetworks helper function.

[criticNetwork,actorNetwork] = createNetworks(numObs,numAct);

5 Train and Validate Agents

5-168

View the critic network configuration.

figure
plot(criticNetwork)

Specify options for the critic and actor representations using
rlRepresentationOptions.

criticOptions = rlRepresentationOptions('Optimizer','adam','LearnRate',1e-3,...
 'GradientThreshold',1,'L2RegularizationFactor',2e-4);
actorOptions = rlRepresentationOptions('Optimizer','adam','LearnRate',1e-4,...
 'GradientThreshold',1,'L2RegularizationFactor',1e-5);

 Train Biped Robot to Walk Using DDPG Agent

5-169

Create the critic and actor representations using the specified deep neural networks and
options. You must also specify the action and observation information for each
representation, which you already obtained from the environment interface. For more
information, see rlRepresentation.

critic = rlRepresentation(criticNetwork,obsInfo,actInfo,'Observation',{'observation'},'Action',{'action'},criticOptions);
actor = rlRepresentation(actorNetwork,obsInfo,actInfo,'Observation',{'observation'},'Action',{'ActorTanh1'},actorOptions);

To create the DDPG agent, first specify the DDPG agent options using
rlDDPGAgentOptions.

agentOptions = rlDDPGAgentOptions;
agentOptions.SampleTime = Ts;
agentOptions.DiscountFactor = 0.99;
agentOptions.MiniBatchSize = 250;
agentOptions.ExperienceBufferLength = 1e6;
agentOptions.TargetSmoothFactor = 1e-3;
agentOptions.NoiseOptions.MeanAttractionConstant = 1;
agentOptions.NoiseOptions.Variance = 0.1;

Then, create the DDPG agent using the specified actor representation, critic
representation, and agent options. For more information, see rlDDPGAgent.

agent = rlDDPGAgent(actor,critic,agentOptions);

Training Options

To train the agent, first specify the training options. For this example, use the following
options:

• Run each training session for at most 10000 episodes, with each episode lasting at
most maxSteps time steps.

• Display the training progress in the Episode Manager dialog box (set the Plots
option) and disable the command line display (set the Verbose option).

• Stop training when the agent receives an average cumulative reward greater than 100
over 250 consecutive episodes.

• Save a copy of the agent for each episode where the cumulative reward is greater than
150.

For more information, see rlTrainingOptions.

maxEpisodes = 10000;
maxSteps = floor(Tf/Ts);

5 Train and Validate Agents

5-170

trainOpts = rlTrainingOptions(...
 'MaxEpisodes',maxEpisodes,...
 'MaxStepsPerEpisode',maxSteps,...
 'ScoreAveragingWindowLength',250,...
 'Verbose',false,...
 'Plots','training-progress',...
 'StopTrainingCriteria','AverageReward',...
 'StopTrainingValue',100,...
 'SaveAgentCriteria','EpisodeReward',...
 'SaveAgentValue',150);

Specify the following training options to train the agent in parallel training mode. If you
do not have Parallel Computing Toolbox™ software installed, set UseParallel to false.

• Set the UseParallel option to true.
• Train the agent in parallel asynchronously.
• After every 32 steps, each worker sends experiences to the host.
• DDPG agents require workers to send 'Experiences' to the host.

trainOpts.UseParallel = true;
trainOpts.ParallelizationOptions.Mode = 'async';
trainOpts.ParallelizationOptions.StepsUntilDataIsSent = 32;
trainOpts.ParallelizationOptions.DataToSendFromWorkers = 'Experiences';

Train Agent

Train the agent using the train function. This process is computationally intensive and
takes several hours to complete. To save time while running this example, load a
pretrained agent by setting doTraining to false. To train the agent yourself, set
doTraining to true. Due to randomness of the parallel training, you can expect
different training results from the plot below. The pretrained agent was trained in parallel
using six workers.

doTraining = false;
if doTraining
 % Train the agent.
 trainingStats = train(agent,env,trainOpts);
else
 % Load pretrained agent for the example.
 load('rlWalkingBipedRobotDDPG.mat','agent')
end

 Train Biped Robot to Walk Using DDPG Agent

5-171

Simulate DDPG Agent

Fix the random generator seed for reproducibility.

rng(0)

To validate the performance of the trained agent, simulate it within the biped robot
environment. For more information on agent simulation, see rlSimulationOptions and
sim.

simOptions = rlSimulationOptions('MaxSteps',maxSteps);
experience = sim(env,agent,simOptions);

5 Train and Validate Agents

5-172

References

[1] N. Heess et al, "Emergence of Locomotion Behaviours in Rich Environments,"
Technical Report, ArXiv, 2017.

[2] T.P. Lillicrap et al, "Continuous Control with Deep Reinforcement Learning,"
International Conference on Learning Representations, 2016.

See Also
train

More About
• “Reinforcement Learning Agents” on page 4-2
• “Train Reinforcement Learning Agents” on page 5-2
• “Define Reward Signals” on page 2-13

 See Also

5-173

https://arxiv.org/pdf/1707.02286.pdf
https://arxiv.org/pdf/1509.02971.pdf

Quadruped Robot Locomotion Using DDPG Agent
This example shows how to train a quadruped robot, modeled using Simscape Multibody,
to walk using a deep deterministic policy gradient (DDPG) agent. For more information on
DDPG agents, see Deep Deterministic Policy Gradient Agents.

Load necessary parameters to the base workspace in MATLAB®.

initializeRobotParameters

Quadruped Robot Model

The environment for this example is a quadruped robot, and the training goal is to make
the robot walk in a straight line using minimal control effort.

5 Train and Validate Agents

5-174

https://www.mathworks.com/help/reinforcement-learning/ug/ddpg-agents.html

The robot is modeled using Simscape Multibody and the Simscape Multibody Contact
Forces Library. The main structural components are four legs and a torso as shown in the
figure. The legs are connected to the torso through revolute joints. Action values provided
by the RL Agent block are scaled and converted into joint torque values. These joint
torque values are used by the revolute joints to compute motion.

Open the model.

mdl = 'rlQuadrupedRobot';
open_system(mdl)

 Quadruped Robot Locomotion Using DDPG Agent

5-175

https://www.mathworks.com/matlabcentral/fileexchange/47417-simscape-multibody-contact-forces-library
https://www.mathworks.com/matlabcentral/fileexchange/47417-simscape-multibody-contact-forces-library

Observations

The robot environment provides are 44 observations to the agent, each normalized
between -1 and 1. These observations are:

• Y (vertical) and Y (lateral) position of the torso center of mass
• Quaternion representing the orientation of the torso
• X (forward), Y (vertical), and Z (lateral) velocities of the torso at the center of mass
• Roll, pitch, and yaw rates of the torso
• Angular positions and velocities of the hip and knee joints for each leg
• Normal and friction force due to ground contact for each leg
• Action values (torque for each joint) from the previous time step

For all four legs, the initial values for the hip and knee joint angles are set to -0.8234 and
1.6468 radians, respectively. The neutral positions of the joints are at 0 radians. This
occurs when the legs are stretched to their maximum and are aligned perpendicularly to
the ground.

Actions

The agent generates eight actions normalized between -1 and 1. After multiplying with a
scaling factor, these correspond to the eight joint torque signals for the revolute joints.
The overall joint torque bounds are +/- 10 Nm for each joint.

Reward

The following reward function is provided to the agent performance at each time step
during training. This reward function encourages the agent to move forward by providing
a positive reward for positive forward velocity. It also encourages the agent to avoid early
termination by providing a constant reward (25Ts/Tf) at each time step. The remaining
terms in the reward function are penalties that discourage unwanted states, such as large
deviations from the desired height and orientation or use of excessive joint torques.

rt = vx + 25
Ts
Tf
− 50y2− 20θ2− 0 . 02∑

i
ut − 1

i 2

where

• vx is the velocity of the torso's center of mass in the x-direction.

5 Train and Validate Agents

5-176

• Ts and Tf are the sample time and final simulation time of the environment,
respectively.

• y is the scaled height error of the torso's center of mass from the desired height of
0.75m.

• θ is the pitch angle of the torso.
• ut − 1

i is the action value for joint i from the previous time step.

Episode termination

During training or simulation, the episode terminates if

• The height of the torso center of mass from the ground is below 0.5 m (fallen)
• The head or tail of the torso is below the ground
• Any knee joint is below the ground
• Roll, pitch, or yaw angles are outside bounds (+/- 0.1745, 0.1745 and 0.3491 radians,

respectively).

Create Environment Interface

Specify the parameters for the observation set.

numObs = 44;
obsInfo = rlNumericSpec([numObs 1]);
obsInfo.Name = 'observations';

Specify the parameters for the action set.

numAct = 8;
actInfo = rlNumericSpec([numAct 1],'LowerLimit',-1,'UpperLimit', 1);
actInfo.Name = 'torque';

Create the environment using the reinforcement learning model.

blk = [mdl, '/RL Agent'];
env = rlSimulinkEnv(mdl,blk,obsInfo,actInfo);

During training, the reset function introduces random deviations into the initial joint
angles and angular velocities.

env.ResetFcn = @quadrupedResetFcn;

 Quadruped Robot Locomotion Using DDPG Agent

5-177

Create DDPG agent

The DDPG agent approximates the long-term reward given observations and actions using
a critic value function representation. The agent also decides which action to take given
the observations, using an actor representation. The actor and critic networks for this
example are inspired by [2].

For more information on creating a deep neural network value function representation,
see “Create Policy and Value Function Representations” on page 3-2. For an example that
creates neural networks for DDPG agents, see “Train DDPG Agent to Control Double
Integrator System” on page 5-38.

Create the networks in the MATLAB workspace using the createNetworks helper
function.

createNetworks

You can also create your actor and critic networks interactively using the Deep Network
Designer App.

View the critic network configuration.

plot(criticNetwork)

5 Train and Validate Agents

5-178

https://www.mathworks.com/help/deeplearning/ug/build-networks-with-deep-network-designer.html
https://www.mathworks.com/help/deeplearning/ug/build-networks-with-deep-network-designer.html

Specify the agent options using rlDDPGAgentOptions.

agentOptions = rlDDPGAgentOptions;
agentOptions.SampleTime = Ts;
agentOptions.DiscountFactor = 0.99;
agentOptions.MiniBatchSize = 250;
agentOptions.ExperienceBufferLength = 1e6;
agentOptions.TargetSmoothFactor = 1e-3;
agentOptions.NoiseOptions.MeanAttractionConstant = 0.15;
agentOptions.NoiseOptions.Variance = 0.1;

Create the rlDDPGAgent object for the agent.

agent = rlDDPGAgent(actor,critic,agentOptions);

 Quadruped Robot Locomotion Using DDPG Agent

5-179

Specify Training Options

To train the agent, first specify the following training options:

• Run each training episode for at most 10000 episodes, with each episode lasting at
most maxSteps time steps.

• Display the training progress in the Episode Manager dialog box (set the Plots
option) and disable the command line display (set the Verbose option).

• Stop training when the agent receives an average cumulative reward greater than 190
over 250 consecutive episodes.

• Save a copy of the agent for each episode where the cumulative reward is greater than
200.

maxEpisodes = 10000;
maxSteps = floor(Tf/Ts);
trainOpts = rlTrainingOptions(...
 'MaxEpisodes',maxEpisodes,...
 'MaxStepsPerEpisode',maxSteps,...
 'ScoreAveragingWindowLength',250,...
 'Verbose',true,...
 'Plots','training-progress',...
 'StopTrainingCriteria','AverageReward',...
 'StopTrainingValue',190,...
 'SaveAgentCriteria','EpisodeReward',...
 'SaveAgentValue',200);

Specify the following training options to train the agent in parallel training mode. If you
do not have Parallel Computing Toolbox™ software installed, set UseParallel to false.

• Set the UseParallel option to true.
• Train the agent in parallel asynchronously.
• After every 32 steps, each worker sends experiences to the host.
• DDPG agents require workers to send 'Experiences' to the host.

trainOpts.UseParallel = true;
trainOpts.ParallelizationOptions.Mode = 'async';
trainOpts.ParallelizationOptions.StepsUntilDataIsSent = 32;
trainOpts.ParallelizationOptions.DataToSendFromWorkers = 'Experiences';

5 Train and Validate Agents

5-180

Train Agent

Train the agent using the train function. Due to the complexity of the robot model, this
process is computationally intensive and takes several hours to complete. To save time
while running this example, load a pretrained agent by setting doTraining to false. To
train the agent yourself, set doTraining to true. Due to randomness of the parallel
training, you can expect different training results from the plot below.

doTraining = false;
if doTraining
 % Train the agent
 trainingStats = train(agent,env,trainOpts);
else
 % Load pretrained agent for the example
 load('rlQuadrupedAgent.mat','agent')
end

Note that due to randomness in the parallel training, different training results are
expected.

 Quadruped Robot Locomotion Using DDPG Agent

5-181

https://www.mathworks.com/help/reinforcement-learning/ref/rl.agent.rlqagent.train.html

Simulate Trained Agent

Fix the random generator seed for reproducibility.

rng(0)

To validate the performance of the trained agent, simulate it within the robot
environment. For more information on agent simulation, see rlSimulationOptions and
sim.

simOptions = rlSimulationOptions('MaxSteps',maxSteps);
experience = sim(env,agent,simOptions);

5 Train and Validate Agents

5-182

https://www.mathworks.com/help/reinforcement-learning/ref/rlsimulationoptions.html
https://www.mathworks.com/help/reinforcement-learning/ref/rl.env.abstractenv.sim.html

References

[1] N. Heess et al, "Emergence of Locomotion Behaviours in Rich Environments,"
Technical Report, ArXiv, 2017.

[2] T.P. Lillicrap et al, "Continuous Control with Deep Reinforcement Learning,"
International Conference on Learning Representations, 2016.

See Also
train

 See Also

5-183

https://arxiv.org/pdf/1707.02286.pdf
https://arxiv.org/pdf/1509.02971.pdf

More About
• “Reinforcement Learning Agents” on page 4-2
• “Train Reinforcement Learning Agents” on page 5-2
• “Define Reward Signals” on page 2-13

5 Train and Validate Agents

5-184

Train Custom LQR Agent
This example shows how to train a custom linear quadratic regulation (LQR) agent to
control a discrete-time linear system modeled in MATLAB®.

Create Linear System Environment

The reinforcement learning environment for this example is a discrete-time linear system.
The dynamics for the system are given by

xt + 1 = Axt + But

The feedback control law is:

ut = − Kxt.

The control objective is to minimize the quadratic cost J = ∑t = 0
∞ xt′Qxt + ut′Rut .

In this example, the system matrices are:

A =
1 . 05 0 . 05 0 . 05
0 . 05 1 . 05 0 . 05

0 0 . 05 1 . 05
, B =

0 . 1 0 0 . 2
0 . 1 0 . 5 0

0 0 0 . 5

A = [1.05,0.05,0.05;0.05,1.05,0.05;0,0.05,1.05];
B = [0.1,0,0.2;0.1,0.5,0;0,0,0.5];

The quadratic cost matrices are:

Q =
10 3 1
3 5 4
1 4 9

, R =
0 . 5 0 0

0 0 . 5 0
0 0 0 . 5

Q = [10,3,1;3,5,4;1,4,9];
R = 0.5*eye(3);

For this environment, the reward at time t is given by rt = − xt′Qxt − ut′Rut, which is the
negative of the quadratic cost. Therefore, maximizing the reward minimizes the cost. The
initial conditions are set randomly by the reset function.

Create the MATLAB environment interface for this linear system and reward. The
myDiscreteEnv function creates an environment by defining custom step and reset

 Train Custom LQR Agent

5-185

functions. For more Information on creating such a custom environment, see “Create
MATLAB Environment using Custom Functions” on page 2-47.

env = myDiscreteEnv(A,B,Q,R);

Fix the random generator seed for reproducibility.

rng(0)

Create Custom LQR Agent

For the LQR problem, the Q-function for a given control gain K can be defined as

QK x, u =
x
u

′HK
x
u

, where HK =
Hxx Hxu
Hux Huu

 is a symmetric, positive definite matrix.

The control law to maximize QK is u = − Huu
−1Hux x, and the feedback gain is

K = Huu
−1Hux .

The matrix HK contains m = 1
2n n + 1 distinct element values, where n is the sum of the

number of states and number of inputs. Denote θ as the vector corresponding to these m
elements, where the off-diagonal elements in HK are multiplied by two.

Represent the Q-function by θ, where θ contains the parameters to be learned.

QK x, u = θ′ K ϕ x, u , where ϕ x, u is the quadratic basis function in terms of x and u.

The LQR agent starts with a stabilizing controller K0. To get an initial stabilizing
controller, place the poles of the closed-loop system A− BK0 inside the unit circle.

K0 = place(A,B,[0.4,0.8,0.5]);

To create a custom agent, you must create a subclass of the rl.agent.CustomAgent
abstract class. For the custom LQR agent, the defined custom subclass is
LQRCustomAgent. For more information, see “Custom Agents” on page 4-32. Create the
custom LQR agent using Q, R, and K0. The agent does not require information on system
matrices A and B.

agent = LQRCustomAgent(Q,R,K0);

For this example, set the agent discount factor to one. To use a discounted future reward,
set the discount factor to a value less than one.

5 Train and Validate Agents

5-186

agent.Gamma = 1;

There are three states and three inputs for the linear system, therefore the total number
of learnable parameters is m = 21. To ensure satisfactory performance of the agent, set
the number of parameter estimates Np to be greater than twice the number of learnable
parameters. In this example, the value is Np = 45.

agent.EstimateNum = 45;

To get good estimation results for θ, you must apply a persistently excited exploration
model to the system. In this example, model exploration by adding white noise to the
controller output: ut = − Kxt + et. In general, the exploration model depends on the
system models.

Train Agent

To train the agent, first specify the training options. For this example, use the following
options:

• Run each training episode for at most 10 episodes, with each episode lasting at most
50 time steps.

• Display the command line display (set the Verbose option) and disable the training
progress in the Episode Manager dialog box (set the Plots option).

For more information, see rlTrainingOptions.

trainingOpts = rlTrainingOptions(...
 'MaxEpisodes',10, ...
 'MaxStepsPerEpisode',50, ...
 'Verbose',true, ...
 'Plots','none');

Train the agent using the train function.

trainingStats = train(agent,env,trainingOpts);

Episode: 1/ 10 | Episode Reward : -56.92 | Episode Steps: 50 | Avg Reward : -56.92 | Step Count : 50
Episode: 2/ 10 | Episode Reward : -13.45 | Episode Steps: 50 | Avg Reward : -35.19 | Step Count : 100
Episode: 3/ 10 | Episode Reward : -21.52 | Episode Steps: 50 | Avg Reward : -30.63 | Step Count : 150
Episode: 4/ 10 | Episode Reward : -18.58 | Episode Steps: 50 | Avg Reward : -27.62 | Step Count : 200
Episode: 5/ 10 | Episode Reward : -11.43 | Episode Steps: 50 | Avg Reward : -24.38 | Step Count : 250
Episode: 6/ 10 | Episode Reward : -19.76 | Episode Steps: 50 | Avg Reward : -16.95 | Step Count : 300
Episode: 7/ 10 | Episode Reward : -12.21 | Episode Steps: 50 | Avg Reward : -16.70 | Step Count : 350

 Train Custom LQR Agent

5-187

Episode: 8/ 10 | Episode Reward : -16.95 | Episode Steps: 50 | Avg Reward : -15.79 | Step Count : 400
Episode: 9/ 10 | Episode Reward : -45.29 | Episode Steps: 50 | Avg Reward : -21.13 | Step Count : 450
Episode: 10/ 10 | Episode Reward : -26.22 | Episode Steps: 50 | Avg Reward : -24.09 | Step Count : 500

Simulate Agent and Compare with Optimal Solution

To validate the performance of the trained agent, simulate it within the MATLAB
environment. For more information on agent simulation, see rlSimulationOptions and
sim.

simOptions = rlSimulationOptions('MaxSteps',20);
experience = sim(env,agent,simOptions);
totalReward = sum(experience.Reward)

totalReward = single
 -7.8685

You can compute the optimal solution for the LQR problem using the dlqr function.

[Koptimal,P] = dlqr(A,B,Q,R);

The optimal reward is given by Joptimal = −x0′Px0.

x0 = experience.Observation.obs1.getdatasamples(1);
Joptimal = -x0'*P*x0;

Compute the error in the reward between the trained LQR agent and the optimal LQR
solution.

rewardError = totalReward - Joptimal

rewardError = single
 8.7034e-07

View the history of the 2-norm of error in the gains between the trained LQR agent and
the optimal LQR solution.

% number of gain updates
len = agent.KUpdate;
err = zeros(len,1);
for i = 1:len
 % norm of error in the gain
 err(i) = norm(agent.KBuffer{i}-Koptimal);
end
plot(err,'b*-')

5 Train and Validate Agents

5-188

Compute the norm of final error for the feedback gain.

gainError = norm(agent.K - Koptimal)

gainError = single
 1.6082e-06

Overall, the trained agent found an LQR solution that is close to the true optimal LQR
solution.

See Also
train

 See Also

5-189

More About
• “Custom Agents” on page 4-32
• “Train Reinforcement Learning Agents” on page 5-2

5 Train and Validate Agents

5-190

Imitate MPC Controller for Lane Keep Assist
This example shows how to train, validate, and test a deep neural network that imitates
the behavior of a model predictive controller for an automotive lane keeping assist
system. It then compares the behavior of the deep neural network with that of the original
controller.

Model predictive control (MPC) solves a constrained quadratic-programming (QP)
optimization problem in real time based on the current state of the plant. Since MPC
solves its optimization problem in an open-loop fashion, there is the potential to replace
the controller with a trained deep neural network. Doing so is an appealing option, since
evaluating a deep neural network can be more computationally efficient than solving a QP
problem in real-time.

If the training of the network sufficiently traverses the state-space for the application, you
can create a reasonable approximation of the controller behavior. You can then deploy the
network for your control application or use the network as a warm starting point for
training the actor network of a reinforcement learning agent

Design MPC Controller

Design an MPC controller for lane keeping assist. To do so, first create a dynamic model
for the vehicle.

[sys,Vx] = createModelForMPCImLKA;

Create and design the MPC controller object mpcobj. Also, create an mpcstate object
for setting the initial controller state. For details on the controller design, type edit
createMPCobjImLKA.

[mpcobj,initialState] = createMPCobjImLKA(sys);

For more information on designing model predictive controllers for lane keeping assist
applications, see “Lane Keeping Assist System Using Model Predictive Control” (Model
Predictive Control Toolbox) and “Lane Keeping Assist with Lane Detection” (Model
Predictive Control Toolbox).

Prepare Input Data

Load the input data from InputDataFileImLKA.mat. The columns of the data set
contain:

 Imitate MPC Controller for Lane Keep Assist

5-191

1 Lateral velocity Vy
2 Yaw angle rate r
3 Lateral deviation e1
4 Relative yaw angle e2
5 Previous steering angle (control variable) u
6 Measured disturbance (road yaw rate: longitudinal velocity * curvature (ρ))
7 Cost function value
8 MPC iterations
9 Steering angle computed by MPC controller: u*

The data in InputDataFileImLKA.mat was created by computing the MPC control
action for randomly generated states, previous control actions, and measured
disturbances. To generate your own training data, use the collectDataImLKA function.

Load the input data.

dataStruct = load('InputDataFileImLKA.mat');
data = dataStruct.Data;

Divide the input data into training, validation, and testing data. First, determine number
of validation data rows based on a given percentage.

totalRows = size(data,1);
validationSplitPercent = 0.1;
numValidationDataRows = floor(validationSplitPercent*totalRows);

Determine the number of test data rows based on a given percentage.

testSplitPercent = 0.05;
numTestDataRows = floor(testSplitPercent*totalRows);

Randomly extract validation and testing data from the input data set. To do so, first
randomly extract enough rows for both data sets.

randomIdx = randperm(totalRows,numValidationDataRows + numTestDataRows);
randomData = data(randomIdx,:);

Divide the random data into validation and testing data.

validationData = randomData(1:numValidationDataRows,:);
testData = randomData(numValidationDataRows + 1:end,:);

5 Train and Validate Agents

5-192

Extract the remaining rows as training data.

trainDataIdx = setdiff(1:totalRows,randomIdx);
trainData = data(trainDataIdx,:);

Randomize the training data.

numTrainDataRows = size(trainData,1);
shuffleIdx = randperm(numTrainDataRows);
shuffledTrainData = trainData(shuffleIdx,:);

Reshape the training and validation data into 4-D matrices to be used with
trainNetwork.

numObservations = 6;
numActions = 1;

trainInput = reshape(shuffledTrainData(:,1:6)',[numObservations 1 1 numTrainDataRows]);
trainOutput = reshape(shuffledTrainData(:,9)',[numActions 1 1 numTrainDataRows]);

validationInput = reshape(validationData(:,1:6)',[numObservations 1 1 numValidationDataRows]);
validationOutput = reshape(validationData(:,9)',[numActions 1 1 numValidationDataRows]);
validationCellArray = {validationInput,validationOutput};

Reshape the testing data to be used with predict.

testDataInput = reshape(testData(:,1:6)',[numObservations 1 1 numTestDataRows]);
testDataOutput = testData(:,9);

Create Deep Neural Network

The deep neural network architecture uses the following types of layers.

• imageInputLayer is input layer of the neural network.
• fullyConnectedLayer multiplies the input by a weight matrix and then adds a bias

vector.
• reluLayer is the activation function of the neural network.
• tanhLayer constrains the value to the range to [-1,1].
• scalingLayer scales the value to the range to [-1.04,1.04], implies that the steering

angle is constrained to be [-60,60] degrees.
• regressionLayer defines the loss function of the neural network.

Create the deep neural network that will imitate the MPC controller after training.

 Imitate MPC Controller for Lane Keep Assist

5-193

imitateMPCNetwork = [
 imageInputLayer([numObservations 1 1],'Normalization','none','Name','InputLayer')
 fullyConnectedLayer(45,'Name','Fc1')
 reluLayer('Name','Relu1')
 fullyConnectedLayer(45,'Name','Fc2')
 reluLayer('Name','Relu2')
 fullyConnectedLayer(45,'Name','Fc3')
 reluLayer('Name','Relu3')
 fullyConnectedLayer(numActions,'Name','OutputLayer')
 tanhLayer('Name','Tanh1')
 scalingLayer('Name','Scale1','Scale',1.04)
 regressionLayer('Name','RegressionOutput')
];

Plot the network.

plot(layerGraph(imitateMPCNetwork))

5 Train and Validate Agents

5-194

Train Deep Neural Network

Specify training options.

options = trainingOptions('adam', ...
 'Verbose',false, ...
 'Plots','training-progress', ...
 'Shuffle','every-epoch', ...
 'MaxEpochs', 30, ...
 'MiniBatchSize',512, ...
 'ValidationData',validationCellArray, ...
 'InitialLearnRate',1e-3, ...
 'GradientThresholdMethod','absolute-value', ...
 'ExecutionEnvironment','cpu', ...

 Imitate MPC Controller for Lane Keep Assist

5-195

 'GradientThreshold',10, ...
 'Epsilon',1e-8);

Train the deep neural network. To view detailed training information in the Command
Window, you can set the 'Verbose' training option to true.

imitateMPCNetObj = trainNetwork(trainInput,trainOutput,imitateMPCNetwork,options);

Training of the deep neural network stops when it reaches the final iteration.

The training and validation loss are nearly the same for each mini-batch indicating the
trained network is not overfit.

Test Trained Network

Check that the trained deep neural network returns steering angles similar to the MPC
controller control actions given the test input data. Compute the network output using the
predict function.

5 Train and Validate Agents

5-196

predictedTestDataOutput = predict(imitateMPCNetObj,testDataInput);

Calculate the root mean-squared error between the network output and the testing data.

testRMSE = sqrt(mean((testDataOutput - predictedTestDataOutput).^2));
fprintf('Test Data RMSE = %d\n', testRMSE);

Test Data RMSE = 3.785926e-02

The small RMSE value indicates that the network outputs closely reproduce the MPC
controller outputs.

Compare Trained Network with MPC Controller

To compare the performance of the MPC controller and the trained deep neural network,
run closed-loop simulations using the vehicle plant model.

Generate random initial conditions for the vehicle that are not part of the original input
data set, with values selected from the following ranges:

1 lateral velocity Vy : range (-2,2) m/s
2 yaw angle rate r : range (-60,60) deg/s
3 lateral deviation e1 : range (-1,1) m
4 relative yaw angle e2 : range (-45,45) deg
5 last steering angle (control variable) u : range (-60,60) deg
6 measured disturbance (road yaw rate: longitudinal velocity * curvature (ρ)) : range

(-0.01,0.01), minimum road radius: 100 m.

rng(5e7)
[x0,u0,rho] = generateRandomDataImLKA(data);

Set the initial plant state and control action in the mpcstate object.

initialState.Plant = x0;
initialState.LastMove = u0;

Extract the sample time from the MPC controller. Also, set the number of simulation
steps.

Ts = mpcobj.Ts;
Tsteps = 30;

 Imitate MPC Controller for Lane Keep Assist

5-197

Obtain the A and B state-space matrices for the vehicle model.

A = sys.A;
B = sys.B;

Initialize the state and input trajectories for the MPC controller simulation.

xHistoryMPC = repmat(x0',Tsteps+1,1);
uHistoryMPC = repmat(u0',Tsteps,1);

Run a closed-loop simulation of the MPC controller and the plant using the mpcmove
function.

for k = 1:Tsteps
 % Obtain plant output measurements, which correspond to the plant outputs.
 xk = xHistoryMPC(k,:)';
 % Compute the next cotnrol action using the MPC controller.
 uk = mpcmove(mpcobj,initialState,xk,zeros(1,4),Vx*rho);
 % Store the control action.
 uHistoryMPC(k,:) = uk;
 % Update the state using the control action.
 xHistoryMPC(k+1,:) = (A*xk + B*[uk;Vx*rho])';
end

Initialize the state and input trajectories for the deep neural network simulation.

xHistoryDNN = repmat(x0',Tsteps+1,1);
uHistoryDNN = repmat(u0',Tsteps,1);
lastMV = u0;

Run a closed-loop simulation of the trained network and the plant. The
neuralnetLKAmove function computes the deep neural network output using the
predict function.

for k = 1:Tsteps
 % Obtain plant output measurements, which correspond to the plant outputs.
 xk = xHistoryDNN(k,:)';
 % Predict the next move using the trained deep neural network.
 uk = neuralnetLKAmove(imitateMPCNetObj,xk,lastMV,rho);
 % Store the control action and update the last MV for the next step.
 uHistoryDNN(k,:) = uk;
 lastMV = uk;
 % Update the state using the control action.
 xHistoryDNN(k+1,:) = (A*xk + B*[uk;Vx*rho])';
end

5 Train and Validate Agents

5-198

Plot the results, and compare the MPC and trained deep neural network (DNN)
trajectories.

plotValidationResultsImLKA(Ts,xHistoryDNN,uHistoryDNN,xHistoryMPC,uHistoryMPC);

 Imitate MPC Controller for Lane Keep Assist

5-199

The neural network successfully imitates the behavior or the MPC. The vehicle state and
control action trajectories for the controller and the deep neural network closely align.

mpcmove | predict | trainNetwork

More About
• “Lane Keeping Assist System Using Model Predictive Control” (Model Predictive

Control Toolbox)
• “Lane Keeping Assist with Lane Detection” (Model Predictive Control Toolbox)

5 Train and Validate Agents

5-200

Deploy Trained Policies

6

Deploy Trained Reinforcement Learning Policies
Once you train a reinforcement learning agent, you can generate code to deploy the
optimal policy. You can generate:

• CUDA® code for deep neural network policies using GPU Coder
• C/C++ code for table, deep neural network, or linear basis function policies using

MATLAB Coder

Note Generating code for deep neural network policies supports networks with only a
single input layer.

For more information on training reinforcement learning agents, see “Train
Reinforcement Learning Agents” on page 5-2.

Create Policy Evaluation Function
To generate code for the trained optimal policy of a reinforcement learning agent, you
must first create a policy evaluation function from the agent. You can generate a policy
function for an agent with any type of policy representation object:

• Value and Q tables (rlTableRepresentation)
• Deep neural networks (rlLayerRepresentation)
• Linear basis functions (rlLinearBasisRepresentation)

For more information on the different types of policies, see “Create Policy and Value
Function Representations” on page 3-2.

To create a policy evaluation function that selects an action based on a given observation,
use the generatePolicyFunction command. This command generates a MATLAB
script, which contains the policy evaluation function, and a MAT-file, which contains the
optimal policy data.

You can generate code to deploy this policy function using GPU Coder or MATLAB Coder.

Generate Code Using GPU Coder
If your trained optimal policy uses a deep neural network, you can generate CUDA code
for the policy using GPU Coder. There are several required and recommended

6 Deploy Trained Policies

6-2

prerequisite products for generating CUDA code for deep neural networks. For more
information, see “Installing Prerequisite Products” (GPU Coder) and “Setting Up the
Prerequisite Products” (GPU Coder).

Not all deep neural network layers support GPU code generation. For a list of supported
layers, see “Supported Networks and Layers” (GPU Coder). For more information and
examples on GPU code generation, see “Deep Learning with GPU Coder” (GPU Coder).

Generate CUDA Code for Deep Neural Network Policy

As an example, generate GPU code for the policy gradient agent trained in “Train PG
Agent to Balance Cart-Pole System” on page 5-18.

Load the trained agent.

load('MATLABCartpolePG.mat','agent')

Create a policy evaluation function for this agent.

generatePolicyFunction(agent)

This command creates the evaluatePolicy.m file, which contains the policy function,
and the agentData.mat file, which contains the trained deep neural network actor. For a
given observation, the policy function evaluates a probability for each potential action
using the actor network. Then, the policy function randomly selects an action based on
these probabilities.

Since the actor network for this PG agent has a single input layer and single output layer,
you can generate code for this network using GPU Coder. For example, you can generate
a CUDA-compatible MEX function.

Configure the codegen function to create a CUDA-compatible C++ MEX function

cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');

Set the dimensions of the policy evaluation input argument, which corresponds to the
observation specification dimensions for the agent. To find the observation dimensions,
use the getObservationInfo function. In this case, the observations are in a four-
element vector.

argstr = '{ones(4,1)}';

 Deploy Trained Reinforcement Learning Policies

6-3

Generate code using the codegen function.

codegen('-config','cfg','evaluatePolicy','-args',argstr,'-report');

This command generates the MEX function evaluatePolicy_mex.

Generate Code Using MATLAB Coder
You can generate C/C++ code for table, deep neural network, or linear basis function
policies using MATLAB Coder.

Using MATLAB Coder, you can generate:

• C/C++ code for policies that use Q tables, value tables, or linear basis functions. For
more information on general C/C++ code generation, see “Generating Code”
(MATLAB Coder).

• C++ code for policies that use deep neural networks. For more information, see
“Prerequisites for Deep Learning with MATLAB Coder” (MATLAB Coder) and “Deep
Learning with MATLAB Coder” (MATLAB Coder).

Generate C Code for Q Table Policy

As an example, generate C code for the Q-learning agent trained in “Train Reinforcement
Learning Agent in Basic Grid World” on page 1-11.

Load the trained agent.

load('basicGWQAgent.mat','qAgent')

Create a policy evaluation function for this agent.

generatePolicyFunction(qAgent)

This command creates the evaluatePolicy.m file, which contains the policy function,
and the agentData.mat file, which contains the trained Q table value function. For a
given observation, the policy function looks up the value function for each potential action
using the Q table. Then, the policy function selects the action for which the value function
is greatest.

Set the dimensions of the policy evaluation input argument, which corresponds to the
observation specification dimensions for the agent. To find the observation dimensions,
use the getObservationInfo function. In this case, there is a single finite observation.

6 Deploy Trained Policies

6-4

argstr = '{[1]}';

Configure the codegen function to generate embeddable C code suitable for targeting a
static library, and set the output folder to buildFolder.

cfg = coder.config('lib');
outFolder = 'buildFolder';

Generate C code using the codegen function.

codegen('-c','-d',outFolder,'-config','cfg',...
 'evaluatePolicy','-args',argstr,'-report');

See Also
generatePolicyFunction

More About
• “Reinforcement Learning Agents” on page 4-2
• “Train Reinforcement Learning Agents” on page 5-2

 See Also

6-5

